These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32806353)

  • 21. Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata.
    Tisarum R; Lessl JT; Dong X; de Oliveira LM; Rathinasabapathi B; Ma LQ
    Environ Pollut; 2014 Mar; 186():110-4. PubMed ID: 24370668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atmospheric deposition of antimony in a typical mercury-antimony mining area, Shaanxi Province, Southwest China.
    Ao M; Qiu G; Zhang C; Xu X; Zhao L; Feng X; Qin S; Meng B
    Environ Pollut; 2019 Feb; 245():173-182. PubMed ID: 30419458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment and distribution of antimony in soils around three coal mines, Anhui, China.
    Qi C; Liu G; Kang Y; Lam PK; Chou C
    J Air Waste Manag Assoc; 2011 Aug; 61(8):850-7. PubMed ID: 21874956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speciation and uptake of antimony and arsenic by two populations of Pteris vittata L. and Holcus lanatus L. from co-contaminated soil.
    Wan X; Yang J; Lei M
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32447-32457. PubMed ID: 30232773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimony in the Soil-Plant System in an Sb Mining/Smelting Area of Southwest China.
    Ning Z; Xiao T; Xiao E
    Int J Phytoremediation; 2015; 17(11):1081-9. PubMed ID: 26067424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China.
    Zhang G; Liu CQ; Liu H; Hu J; Han G; Li L
    J Environ Monit; 2009 Sep; 11(9):1570-8. PubMed ID: 19724824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils.
    Tang H; Hassan MU; Nawaz M; Yang W; Liu Y; Yang B
    Ecotoxicol Environ Saf; 2023 Nov; 266():115583. PubMed ID: 37862748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments.
    Shangguan YX; Zhao L; Qin Y; Hou H; Zhang N
    Ecotoxicol Environ Saf; 2016 Nov; 133():1-9. PubMed ID: 27395817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake.
    Wan XM; Tandy S; Hockmann K; Schulin R
    Environ Pollut; 2013 Jan; 172():53-60. PubMed ID: 22982553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar.
    Jamali Hajiani N; Ghaderian SM; Karimi N; Schat H
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16542-53. PubMed ID: 26077322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Potential Use of Vetiveria zizanioides for the Phytoremediation of Antimony, Arsenic and Their Co-Contamination.
    Mirza N; Mubarak H; Chai LY; Yong W; Khan MJ; Khan QU; Hashmi MZ; Farooq U; Sarwar R; Yang ZH
    Bull Environ Contam Toxicol; 2017 Oct; 99(4):511-517. PubMed ID: 28785982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aluminum adsorption and antimonite oxidation dominantly regulate antimony solubility in soils.
    Liu YQ; Wen-Xin Lv ; Zhong-Qiu Zhao ; Yang YP; Zhang LX; Wang LY; Jing CY; Duan GL; Zhu YG
    Chemosphere; 2022 Dec; 309(Pt 1):136651. PubMed ID: 36181839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review.
    Nakamaru YM; Altansuvd J
    Chemosphere; 2014 Sep; 111():366-71. PubMed ID: 24997941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.
    Hockmann K; Tandy S; Lenz M; Reiser R; Conesa HM; Keller M; Studer B; Schulin R
    Chemosphere; 2015 Sep; 134():536-43. PubMed ID: 25592464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antimony pollution in China.
    He M; Wang X; Wu F; Fu Z
    Sci Total Environ; 2012 Apr; 421-422():41-50. PubMed ID: 21741676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Migration and leaching risk of extraneous antimony in three representative soils of China: lysimeter and batch experiments.
    Hou H; Yao N; Li JN; Wei Y; Zhao L; Zhang J; Li FS
    Chemosphere; 2013 Nov; 93(9):1980-8. PubMed ID: 23931906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of four woody plant species revegetation on habitat improvement and the spatial distribution of arsenic and antimony in zinc smelting slag.
    Sun H; Li X; Wu Y
    Int J Phytoremediation; 2021; 23(14):1506-1518. PubMed ID: 34019774
    [No Abstract]   [Full Text] [Related]  

  • 38. Mobility and potential bioavailability of antimony in contaminated soils: Short-term impact on microbial community and soil biochemical functioning.
    Diquattro S; Garau G; Mangia NP; Drigo B; Lombi E; Vasileiadis S; Castaldi P
    Ecotoxicol Environ Saf; 2020 Jun; 196():110576. PubMed ID: 32279000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mobility of antimony in soil and its availability to plants.
    Hammel W; Debus R; Steubing L
    Chemosphere; 2000 Dec; 41(11):1791-8. PubMed ID: 11057620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects.
    He M; Wang N; Long X; Zhang C; Ma C; Zhong Q; Wang A; Wang Y; Pervaiz A; Shan J
    J Environ Sci (China); 2019 Jan; 75():14-39. PubMed ID: 30473279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.