These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 32806353)
41. Microbial response to antimony-arsenic distribution and geochemical factors at arable soil around an antimony mining site. Huang H; Lin K; Lei L; Li Y; Li Y; Liang K; Shangguan Y; Xu H Environ Sci Pollut Res Int; 2023 Apr; 30(16):47972-47984. PubMed ID: 36746862 [TBL] [Abstract][Full Text] [Related]
42. Geogenic and anthropogenic interactions at a former Sb mine: environmental impacts of As and Sb. Mbadugha L; Cowper D; Dossanov S; Paton GI Environ Geochem Health; 2020 Nov; 42(11):3911-3924. PubMed ID: 32638254 [TBL] [Abstract][Full Text] [Related]
43. Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Li B; Xu R; Sun X; Han F; Xiao E; Chen L; Qiu L; Sun W Chemosphere; 2021 Jan; 263():128227. PubMed ID: 33297183 [TBL] [Abstract][Full Text] [Related]
44. [Characteristics of Pollution and Microbial Community Structure in the Antimony Mining Area of Longnan, Gansu Province]. Zhao QY; Zhang ZM; Tan Z; Li WJ; Pan LB; Guan X; Li JH Huan Jing Ke Xue; 2024 Jul; 45(7):4266-4278. PubMed ID: 39022972 [TBL] [Abstract][Full Text] [Related]
45. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions. Ngo LK; Pinch BM; Bennett WW; Teasdale PR; Jolley DF Environ Pollut; 2016 Sep; 216():104-114. PubMed ID: 27239694 [TBL] [Abstract][Full Text] [Related]
46. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. He M Environ Geochem Health; 2007 Jun; 29(3):209-19. PubMed ID: 17351815 [TBL] [Abstract][Full Text] [Related]
47. Spatial Distribution and Environmental Risk of Arsenic and Antimony in Soil Around an Antimony Smelter of Qinglong County. He Y; Han Z; Wu F; Xiong J; Gu S; Wu P Bull Environ Contam Toxicol; 2021 Dec; 107(6):1043-1052. PubMed ID: 33787976 [TBL] [Abstract][Full Text] [Related]
48. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China. Liu F; Le XC; McKnight-Whitford A; Xia Y; Wu F; Elswick E; Johnson CC; Zhu C Environ Geochem Health; 2010 Oct; 32(5):401-13. PubMed ID: 20101438 [TBL] [Abstract][Full Text] [Related]
49. Speciation, in vitro bioaccessibility and health risk of antimony in soils near an old industrial area. Wang H; Yang Q; Zhu Y; Gu Q; Martín JD Sci Total Environ; 2023 Jan; 854():158767. PubMed ID: 36113806 [TBL] [Abstract][Full Text] [Related]
50. The influence of different antimony (Sb) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils. Bagherifam S; Brown TC; Wijayawardena A; Naidu R Environ Pollut; 2021 Feb; 270():116270. PubMed ID: 33341553 [TBL] [Abstract][Full Text] [Related]
51. Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Denys S; Tack K; Caboche J; Delalain P Chemosphere; 2009 Feb; 74(5):711-6. PubMed ID: 19027930 [TBL] [Abstract][Full Text] [Related]
52. Antimony contamination and its risk management in complex environmental settings: A review. Bolan N; Kumar M; Singh E; Kumar A; Singh L; Kumar S; Keerthanan S; Hoang SA; El-Naggar A; Vithanage M; Sarkar B; Wijesekara H; Diyabalanage S; Sooriyakumar P; Vinu A; Wang H; Kirkham MB; Shaheen SM; Rinklebe J; Siddique KHM Environ Int; 2022 Jan; 158():106908. PubMed ID: 34619530 [TBL] [Abstract][Full Text] [Related]
53. Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Tighe M; Ashley P; Lockwood P; Wilson S Sci Total Environ; 2005 Jul; 347(1-3):175-86. PubMed ID: 16084977 [TBL] [Abstract][Full Text] [Related]
54. Effect of pH on the adsorption of arsenic(V) and antimony(V) by the black soil in three systems: Performance and mechanism. Fan Y; Zheng C; Liu H; He C; Shen Z; Zhang TC Ecotoxicol Environ Saf; 2020 Mar; 191():110145. PubMed ID: 31954214 [TBL] [Abstract][Full Text] [Related]
55. Uptake, tolerance, and detoxification mechanisms of antimonite and antimonate in Boehmeria nivea L. Lu Y; Zhang Z; Wang Y; Peng F; Yang Z; Li H J Environ Manage; 2023 May; 334():117504. PubMed ID: 36801690 [TBL] [Abstract][Full Text] [Related]
56. Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system. Zhang X; Liu T; Li F; Li X; Du Y; Yu H; Wang X; Liu C; Feng M; Liao B J Environ Sci (China); 2021 Feb; 100():90-98. PubMed ID: 33279057 [TBL] [Abstract][Full Text] [Related]
57. Bacterial community profile of contaminated soils in a typical antimony mining site. Wang N; Zhang S; He M Environ Sci Pollut Res Int; 2018 Jan; 25(1):141-152. PubMed ID: 28039624 [TBL] [Abstract][Full Text] [Related]
58. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil. Hockmann K; Tandy S; Studer B; Evangelou MWH; Schulin R Environ Pollut; 2018 Jul; 238():255-262. PubMed ID: 29567447 [TBL] [Abstract][Full Text] [Related]
59. [Characteristics of heavy metals in soil profile and pore water around Hechi antimony-lead smelter, Guangxi, China]. Xiang M; Zhang GP; Li L; Wei XF; Cai YB Huan Jing Ke Xue; 2012 Jan; 33(1):266-72. PubMed ID: 22452221 [TBL] [Abstract][Full Text] [Related]
60. Response of soil microbial activities and ammonia oxidation potential to environmental factors in a typical antimony mining area. Wang A; Liu S; Xie J; Ouyang W; He M; Lin C; Liu X J Environ Sci (China); 2023 May; 127():767-779. PubMed ID: 36522104 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]