These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 32806353)
61. Response of soil protists to antimony and arsenic contamination. Yang R; Sun W; Guo L; Li B; Wang Q; Huang D; Gao W; Xu R; Li Y Environ Pollut; 2022 Dec; 315():120387. PubMed ID: 36223853 [TBL] [Abstract][Full Text] [Related]
62. Pollution characteristics and risk assessment of antimony and arsenic in a typical abandoned antimony smelter. Ren W; Ran Y; Mou Y; Cui Y; Sun B; Yu L; Wan D; Hu D; Zhao P Environ Geochem Health; 2023 Jul; 45(7):5467-5480. PubMed ID: 37099043 [TBL] [Abstract][Full Text] [Related]
63. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. Pierart A; Shahid M; Séjalon-Delmas N; Dumat C J Hazard Mater; 2015 May; 289():219-234. PubMed ID: 25726907 [TBL] [Abstract][Full Text] [Related]
64. Geochemical behaviors of antimony in mining-affected water environment (Southwest China). Li L; Tu H; Zhang S; Wu L; Wu M; Tang Y; Wu P Environ Geochem Health; 2019 Dec; 41(6):2397-2411. PubMed ID: 30972516 [TBL] [Abstract][Full Text] [Related]
65. Toxicity of different forms of antimony to rice plants: Effects on reactive oxidative species production, antioxidative systems, and uptake of essential elements. Zhu Y; Wu Q; Lv H; Chen W; Wang L; Shi S; Yang J; Zhao P; Li Y; Christopher R; Liu H; Feng R Environ Pollut; 2020 Aug; 263(Pt B):114544. PubMed ID: 32305804 [TBL] [Abstract][Full Text] [Related]
66. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils. Ptak C; McBride M Environ Toxicol Chem; 2015 Dec; 34(12):2732-8. PubMed ID: 26076768 [TBL] [Abstract][Full Text] [Related]
67. Effect of soil organic matter on antimony bioavailability after the remediation process. Nakamaru YM; Martín Peinado FJ Environ Pollut; 2017 Sep; 228():425-432. PubMed ID: 28554032 [TBL] [Abstract][Full Text] [Related]
68. DGT and selective extractions reveal differences in arsenic and antimony uptake by the white icicle radish (Raphanus sativus). Ngo LK; Price HL; Bennett WW; Teasdale PR; Jolley DF Environ Pollut; 2020 Apr; 259():113815. PubMed ID: 31884210 [TBL] [Abstract][Full Text] [Related]
69. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity. Kataoka T; Mitsunobu S; Hamamura N Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548 [TBL] [Abstract][Full Text] [Related]
70. Influence of Soil Phosphate on the Accumulation and Toxicity of Arsenic and Antimony in Choy Sum Cultivated in Individually and Co-contaminated Soils. Egodawatta LP; Holland A; Koppel D; Jolley DF Environ Toxicol Chem; 2020 May; 39(6):1233-1243. PubMed ID: 32143235 [TBL] [Abstract][Full Text] [Related]
71. Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions. Sun W; Xiao E; Xiao T; Krumins V; Wang Q; Häggblom M; Dong Y; Tang S; Hu M; Li B; Xia B; Liu W Environ Sci Technol; 2017 Aug; 51(16):9165-9175. PubMed ID: 28700218 [TBL] [Abstract][Full Text] [Related]
72. Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea. Jung MC; Thornton I; Chon HT Sci Total Environ; 2002 Aug; 295(1-3):81-9. PubMed ID: 12186294 [TBL] [Abstract][Full Text] [Related]
73. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Steely S; Amarasiriwardena D; Xing B Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851 [TBL] [Abstract][Full Text] [Related]
74. The Release of Antimony from Mine Dump Soils in the Presence and Absence of Forest Litter. Lewińska K; Karczewska A; Siepak M; Gałka B Int J Environ Res Public Health; 2018 Nov; 15(12):. PubMed ID: 30477215 [TBL] [Abstract][Full Text] [Related]
75. Molecular diversity of arbuscular mycorrhizal fungi at a large-scale antimony mining area in southern China. Wei Y; Chen Z; Wu F; Hou H; Li J; Shangguan Y; Zhang J; Li F; Zeng Q J Environ Sci (China); 2015 Mar; 29():18-26. PubMed ID: 25766009 [TBL] [Abstract][Full Text] [Related]
76. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores. Hu X; Guo X; He M; Li S J Environ Sci (China); 2016 Jun; 44():171-179. PubMed ID: 27266313 [TBL] [Abstract][Full Text] [Related]
77. Effects of antimony and arsenic on antioxidant enzyme activities of two steppic plant species in an old antimony mining area. Benhamdi A; Bentellis A; Rached O; Du Laing G; Mechakra A Biol Trace Elem Res; 2014 Apr; 158(1):96-104. PubMed ID: 24563031 [TBL] [Abstract][Full Text] [Related]
78. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Ahmad M; Lee SS; Lim JE; Lee SE; Cho JS; Moon DH; Hashimoto Y; Ok YS Chemosphere; 2014 Jan; 95():433-41. PubMed ID: 24183621 [TBL] [Abstract][Full Text] [Related]
79. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area. Guo W; Zhang Z; Wang H; Qin H; Fu Z J Environ Manage; 2021 Jul; 289():112493. PubMed ID: 33823409 [TBL] [Abstract][Full Text] [Related]
80. Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. Diquattro S; Castaldi P; Ritch S; Juhasz AL; Brunetti G; Scheckel KG; Garau G; Lombi E Sci Total Environ; 2021 May; 770():145354. PubMed ID: 33736407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]