These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32806359)

  • 1. Assessing controls on selenium fate and transport in watersheds using the SWAT model.
    Neupane P; Bailey RT; Tavakoli-Kivi S
    Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the controlling factors on salinity in soil, groundwater, and river water in a semi-arid agricultural watershed using SWAT-Salt.
    Hosseini P; Bailey RT
    Sci Total Environ; 2022 Mar; 810():152293. PubMed ID: 34896504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling.
    Bailey RT; Bieger K; Flores L; Tomer M
    Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing selenium contamination in the irrigated stream-aquifer system of the Arkansas River, Colorado.
    Gates TK; Cody BM; Donnelly JP; Herting AW; Bailey RT; Mueller Price J
    J Environ Qual; 2009; 38(6):2344-56. PubMed ID: 19875790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the impact of climate extremes on salt mobilization and loading in non-developed, high-desert landscapes using SWAT.
    Henson E; Bailey RT
    J Contam Hydrol; 2023 Jan; 252():104107. PubMed ID: 36396527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of surface water - groundwater nitrate governing factors in Jianghuai hilly area based on coupled SWAT-MODFLOW-RT3D modeling approach.
    Zhang L; Li X; Han J; Lin J; Dai Y; Liu P
    Sci Total Environ; 2024 Feb; 912():168830. PubMed ID: 38036123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA.
    Mills TJ; Mast MA; Thomas J; Keith G
    Sci Total Environ; 2016 Oct; 566-567():1621-1631. PubMed ID: 27320741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of nitrate on selenium in irrigated agricultural groundwater systems.
    Bailey RT; Hunter WJ; Gates TK
    J Environ Qual; 2012; 41(3):783-92. PubMed ID: 22565259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes.
    Du X; Zhang X; Mukundan R; Hoang L; Owens EM
    Environ Pollut; 2019 Jun; 249():125-135. PubMed ID: 30884391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Impact of Land Use Change on Basin-scale Transfer of Fecal Indicator Bacteria: SWAT Model Performance.
    Kim M; Boithias L; Cho KH; Sengtaheuanghoung O; Ribolzi O
    J Environ Qual; 2018 Sep; 47(5):1115-1122. PubMed ID: 30272793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of extensive agricultural water drainage on the hydrology of the Kleine Nete watershed, Belgium.
    Yimer EA; Riakhi FE; Bailey RT; Nossent J; van Griensven A
    Sci Total Environ; 2023 Aug; 885():163903. PubMed ID: 37146800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.
    Sun Z; Lotz T; Chang NB
    J Environ Manage; 2017 Dec; 204(Pt 1):92-101. PubMed ID: 28863340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying climate change impacts on future water resources and salinity transport in a high semi-arid watershed.
    Balakrishnan JV; Bailey RT; Jeong J; Park S; Abitew T
    J Contam Hydrol; 2024 Feb; 261():104289. PubMed ID: 38242065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.
    Essaid HI; Caldwell RR
    Sci Total Environ; 2017 Dec; 599-600():581-596. PubMed ID: 28494284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.
    Niazi M; Obropta C; Miskewitz R
    J Environ Manage; 2015 Mar; 151():167-77. PubMed ID: 25576694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada.
    Liang K; Jiang Y; Qi J; Fuller K; Nyiraneza J; Meng FR
    Sci Total Environ; 2020 Aug; 729():138793. PubMed ID: 32371206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed.
    Kim J; Her Y; Bhattarai R; Jeong H
    Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale.
    Pérez-Gutiérrez JD; Kumar S
    J Environ Manage; 2019 Jun; 239():385-394. PubMed ID: 30925408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified approach to quantify aquifer vulnerability to pollution towards sustainable groundwater management in Irrigated Indus Basin.
    Umar M; Khan SN; Arshad A; Aslam RA; Khan HMS; Rashid H; Pham QB; Nasir A; Noor R; Khedher KM; Anh DT
    Environ Sci Pollut Res Int; 2022 Apr; 29(18):27257-27278. PubMed ID: 34978039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.