BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 32806676)

  • 1. 3D-Printed Immunosensor Arrays for Cancer Diagnostics.
    Sharafeldin M; Kadimisetty K; Bhalerao KS; Chen T; Rusling JF
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32806676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Printing and Its Potential to Develop Sensors for Cancer with Improved Performance.
    Rocha Neto JBM; Soares JC; Longhitano GA; Coatrini-Soares A; Carvalho HF; Oliveira ON; Beppu MM; da Silva JVL
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How 3D printing can boost advances in analytical and bioanalytical chemistry.
    Ambrosi A; Bonanni A
    Mikrochim Acta; 2021 Jul; 188(8):265. PubMed ID: 34287702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Biosensor Arrays for Medical Diagnostics.
    Sharafeldin M; Jones A; Rusling JF
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications.
    Duarte LC; Figueredo F; Chagas CLS; Cortón E; Coltro WKT
    Anal Chim Acta; 2024 Apr; 1299():342429. PubMed ID: 38499426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing Microfluidic Sensing Devices Using 3D Printing.
    Rusling JF
    ACS Sens; 2018 Mar; 3(3):522-526. PubMed ID: 29490458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional-printing for microfluidics or the other way around?
    Zhang Y
    Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Technologies of Three-Dimensional Printing and Mobile Health in COVID-19 Immunity and Regenerative Dentistry.
    Liu C; Staples R; Gómez-Cerezo MN; Ivanovski S; Han P
    Tissue Eng Part C Methods; 2023 May; 29(5):163-182. PubMed ID: 36200626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of 3D-printing technologies for wearable and implantable bio-integrated sensors.
    Rachim VP; Park SM
    Essays Biochem; 2021 Aug; 65(3):491-502. PubMed ID: 33860794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive-manufactured (3D-printed) electrochemical sensors: A critical review.
    Cardoso RM; Kalinke C; Rocha RG; Dos Santos PL; Rocha DP; Oliveira PR; Janegitz BC; Bonacin JA; Richter EM; Munoz RAA
    Anal Chim Acta; 2020 Jun; 1118():73-91. PubMed ID: 32418606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing for Cancer Diagnosis: What Unique Advantages Are Gained?
    Zhang Y
    ACS Mater Au; 2023 Nov; 3(6):620-635. PubMed ID: 38089653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Cancer Cells from Liquid Biopsies Using 3D-Printed Affinity Devices.
    Yang Y; Griffin K; Villareal S; Pappas D
    Methods Mol Biol; 2023; 2679():233-240. PubMed ID: 37300620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex Immunosensor Arrays for Electrochemical Detection of Cancer Biomarker Proteins.
    Munge BS; Stracensky T; Gamez K; DiBiase D; Rusling JF
    Electroanalysis; 2016 Nov; 28(11):2644-2658. PubMed ID: 28592919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in point-of-care technologies for molecular diagnostics.
    Zarei M
    Biosens Bioelectron; 2017 Dec; 98():494-506. PubMed ID: 28728010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D-Printed Sensor for Monitoring Biosignals in Small Animals.
    Cho SJ; Byun D; Nam TS; Choi SY; Lee BG; Kim MK; Kim S
    J Healthc Eng; 2017; 2017():9053764. PubMed ID: 29209491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.