BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 32806676)

  • 21. Applications of three-dimensional printing technology in urological practice.
    Youssef RF; Spradling K; Yoon R; Dolan B; Chamberlin J; Okhunov Z; Clayman R; Landman J
    BJU Int; 2015 Nov; 116(5):697-702. PubMed ID: 26010346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
    Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L
    Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancing 3D printed microfluidics with computational methods for sweat analysis.
    Ece E; Ölmez K; Hacıosmanoğlu N; Atabay M; Inci F
    Mikrochim Acta; 2024 Feb; 191(3):162. PubMed ID: 38411762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Printing of Fully Integrated Microfluidic Devices for Biosensing.
    Du Y; Reitemeier J; Jiang Q; Bappy MO; Bohn PW; Zhang Y
    Small; 2024 Feb; 20(5):e2304966. PubMed ID: 37752777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printed patient-specific applications in orthopedics.
    Wong KC
    Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research highlights: printing the future of microfabrication.
    Tseng P; Murray C; Kim D; Di Carlo D
    Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-Printed Flow Cells for Aptamer-Based Impedimetric Detection of
    Siller IG; Preuss JA; Urmann K; Hoffmann MR; Scheper T; Bahnemann J
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional 3D printing: Approaches and bioapplications.
    Palmara G; Frascella F; Roppolo I; Chiappone A; Chiadò A
    Biosens Bioelectron; 2021 Mar; 175():112849. PubMed ID: 33250333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-printed bioanalytical devices.
    Bishop GW; Satterwhite-Warden JE; Kadimisetty K; Rusling JF
    Nanotechnology; 2016 Jul; 27(28):284002. PubMed ID: 27250897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis.
    Erdem A; Yildiz E; Senturk H; Maral M
    J Pharm Biomed Anal; 2023 Jun; 230():115385. PubMed ID: 37054602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional printing: technologies, applications, and limitations in neurosurgery.
    Pucci JU; Christophe BR; Sisti JA; Connolly ES
    Biotechnol Adv; 2017 Sep; 35(5):521-529. PubMed ID: 28552791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-Printing of Functional Biomedical Microdevices via Light- and Extrusion-Based Approaches.
    Hwang HH; Zhu W; Victorine G; Lawrence N; Chen S
    Small Methods; 2018 Feb; 2(2):. PubMed ID: 30090851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated Printed Microfluidic Biosensors.
    Loo JFC; Ho AHP; Turner APF; Mak WC
    Trends Biotechnol; 2019 Oct; 37(10):1104-1120. PubMed ID: 30992149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current trends in the development of the electrochemiluminescent immunosensors.
    Muzyka K
    Biosens Bioelectron; 2014 Apr; 54():393-407. PubMed ID: 24292145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures.
    Manzanares-Palenzuela CL; Hermanova S; Sofer Z; Pumera M
    Nanoscale; 2019 Jul; 11(25):12124-12131. PubMed ID: 31211311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
    Alapan Y; Hasan MN; Shen R; Gurkan UA
    J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.