BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 32806676)

  • 41. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Challenges faced with 3D-printed electrochemical sensors in analytical applications.
    Pradela-Filho LA; Araújo DAG; Ataide VN; Meloni GN; Paixão TRLC
    Anal Bioanal Chem; 2024 Apr; ():. PubMed ID: 38664267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D printed microfluidics: advances in strategies, integration, and applications.
    Su R; Wang F; McAlpine MC
    Lab Chip; 2023 Mar; 23(5):1279-1299. PubMed ID: 36779387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Benefits and limitations of three-dimensional printing technology for ecological research.
    Behm JE; Waite BR; Hsieh ST; Helmus MR
    BMC Ecol; 2018 Sep; 18(1):32. PubMed ID: 30200934
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Emerging Applications of Bedside 3D Printing in Plastic Surgery.
    Chae MP; Rozen WM; McMenamin PG; Findlay MW; Spychal RT; Hunter-Smith DJ
    Front Surg; 2015; 2():25. PubMed ID: 26137465
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A simple, low-cost conductive composite material for 3D printing of electronic sensors.
    Leigh SJ; Bradley RJ; Purssell CP; Billson DR; Hutchins DA
    PLoS One; 2012; 7(11):e49365. PubMed ID: 23185319
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics.
    Kadimisetty K; Song J; Doto AM; Hwang Y; Peng J; Mauk MG; Bushman FD; Gross R; Jarvis JN; Liu C
    Biosens Bioelectron; 2018 Jun; 109():156-163. PubMed ID: 29550739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of 3D printing technology in tumor diagnosis and treatment.
    Wu J; Liang B; Lu S; Xie J; Song Y; Wang L; Gao L; Huang Z
    Biomed Mater; 2023 Nov; 19(1):. PubMed ID: 37918002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics.
    Heuer C; Preuß JA; Habib T; Enders A; Bahnemann J
    Eng Life Sci; 2022 Dec; 22(12):744-759. PubMed ID: 36514534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2).
    Damiati S; Küpcü S; Peacock M; Eilenberger C; Zamzami M; Qadri I; Choudhry H; Sleytr UB; Schuster B
    Biosens Bioelectron; 2017 Aug; 94():500-506. PubMed ID: 28343102
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidics by Additive Manufacturing for Wearable Biosensors: A Review.
    Padash M; Enz C; Carrara S
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751404
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface.
    Pradela Filho LA; Paixão TRLC; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2024 Apr; 416(9):2031-2037. PubMed ID: 37470814
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Digital Manufacturing for Microfluidics.
    Naderi A; Bhattacharjee N; Folch A
    Annu Rev Biomed Eng; 2019 Jun; 21():325-364. PubMed ID: 31167099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Advances in 3D Printing of Biomedical Sensing Devices.
    Ali MA; Hu C; Yttri EA; Panat R
    Adv Funct Mater; 2022 Feb; 32(9):. PubMed ID: 36324737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware.
    Coakley M; Hurt DE
    J Lab Autom; 2016 Aug; 21(4):489-95. PubMed ID: 27197798
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Printed Electrochemical Biosensors: Opportunities and Metrological Challenges.
    Sardini E; Serpelloni M; Tonello S
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33158129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.