These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32806889)
1. Enhanced Photocatalytic Performance of Nanosized Mixed-Ligand Metal-Organic Frameworks through Sequential Energy and Electron Transfer Process. Kim M; Oh JS; Kim BH; Kim AY; Park KC; Mun J; Gupta G; Lee CY Inorg Chem; 2020 Sep; 59(17):12947-12953. PubMed ID: 32806889 [TBL] [Abstract][Full Text] [Related]
3. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Khan MS; Li Y; Li DS; Qiu J; Xu X; Yang HY Nanoscale Adv; 2023 Nov; 5(23):6318-6348. PubMed ID: 38045530 [TBL] [Abstract][Full Text] [Related]
4. Efficient Energy Transfer (EnT) in Pyrene- and Porphyrin-Based Mixed-Ligand Metal-Organic Frameworks. Park KC; Seo C; Gupta G; Kim J; Lee CY ACS Appl Mater Interfaces; 2017 Nov; 9(44):38670-38677. PubMed ID: 29048158 [TBL] [Abstract][Full Text] [Related]
5. In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO Kong XJ; He T; Zhou J; Zhao C; Li TC; Wu XQ; Wang K; Li JR Small; 2021 Jun; 17(22):e2005357. PubMed ID: 33615728 [TBL] [Abstract][Full Text] [Related]
6. Charge Transport in Zirconium-Based Metal-Organic Frameworks. Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008 [TBL] [Abstract][Full Text] [Related]
7. Enhanced photocatalytic performance of BiOBr/NH Zhu SR; Liu PF; Wu MK; Zhao WN; Li GC; Tao K; Yi FY; Han L Dalton Trans; 2016 Nov; 45(43):17521-17529. PubMed ID: 27747336 [TBL] [Abstract][Full Text] [Related]
8. Synergistic adsorption and photocatalytic degradation of persist synthetic dyes by capsule-like porphyrin-based MOFs. Wang N; Liu S; Sun Z; Han Y; Xu J; Xu Y; Wu J; Meng H; Zhang B; Zhang X Nanotechnology; 2021 Aug; 32(46):. PubMed ID: 34284373 [TBL] [Abstract][Full Text] [Related]
9. Metal-organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of Rhodamine B under solar light. Pattappan D; Vargheese S; Kavya KV; Kumar RTR; Haldorai Y Chemosphere; 2022 Jan; 286(Pt 2):131726. PubMed ID: 34343921 [TBL] [Abstract][Full Text] [Related]
10. Hybrid metal organic frameworks as an Exotic material for the photocatalytic degradation of pollutants present in wastewater: A review. Ramalingam G; Pachaiappan R; Kumar PS; Dharani S; Rajendran S; Vo DN; Hoang TKA Chemosphere; 2022 Feb; 288(Pt 2):132448. PubMed ID: 34619253 [TBL] [Abstract][Full Text] [Related]
11. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A. Lv SW; Liu JM; Li CY; Zhao N; Wang ZH; Wang S Chemosphere; 2020 Mar; 243():125378. PubMed ID: 31765898 [TBL] [Abstract][Full Text] [Related]
12. Fast photocatalytic degradation of rhodamine B using indium-porphyrin based cationic MOF under visible light irradiation. Dou CX; Tian XK; Chen YJ; Yin PP; Guo JH; Yang XG; Guo YM; Ma LF Phys Chem Chem Phys; 2023 Sep; 25(37):25139-25145. PubMed ID: 37706361 [TBL] [Abstract][Full Text] [Related]
13. RhB-Embedded Zirconium-Naphthalene-Based Metal-Organic Framework Composite as a Luminescent Self-Calibrating Platform for the Selective Detection of Inorganic Ions. Zhang Z; Wei Z; Meng F; Su J; Chen D; Guo Z; Xing H Chemistry; 2020 Feb; 26(7):1661-1667. PubMed ID: 31840324 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Photocatalytic Activity of the AgI/UiO-66(Zr) Composite for Rhodamine B Degradation under Visible-Light Irradiation. Sha Z; Sun J; Chan HSO; Jaenicke S; Wu J Chempluschem; 2015 Aug; 80(8):1321-1328. PubMed ID: 31973301 [TBL] [Abstract][Full Text] [Related]
15. Assembly of Functional Co(II) Metal-Organic Frameworks through a Mixed Ligand Strategy: Structure and Photocatalytic Degradation Properties. Huang JB; Yin L; Yue TC; Wang LL; Wang DZ Inorg Chem; 2024 Apr; 63(15):6928-6937. PubMed ID: 38571457 [TBL] [Abstract][Full Text] [Related]
16. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Zhang X; Wang J; Dong XX; Lv YK Chemosphere; 2020 Mar; 242():125144. PubMed ID: 31669994 [TBL] [Abstract][Full Text] [Related]
17. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H Trang TNQ; Phan TB; Nam ND; Thu VTH ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392 [TBL] [Abstract][Full Text] [Related]
18. Metal-Organic Frameworks With Variable Valence Metal-Photoactive Components: Emerging Platform for Volatile Organic Compounds Photocatalytic Degradation. Qian Y; Ma D; Zhong J Front Chem; 2021; 9():749839. PubMed ID: 34869203 [TBL] [Abstract][Full Text] [Related]
19. Green Photocatalysis of Organic Pollutants by Bimetallic Zn-Zr Metal-Organic Framework Catalyst. Zhang X; Yu R; Wang D; Li W; Zhang Y Front Chem; 2022; 10():918941. PubMed ID: 35646822 [TBL] [Abstract][Full Text] [Related]
20. Unraveling the Optimal Cerium Content for Boosting the Photoresponse Activity of Mixed-Metal Zr/Ce-Based Metal-Organic Frameworks through a Photodynamic and Photocurrent Correlation: Implications on Water Splitting Efficiency. Bhattacharyya A; Gutiérrez M; Cohen B; Szalad H; Albero J; Garcia H; Douhal A ACS Appl Mater Interfaces; 2023 Aug; 15(30):36434-36446. PubMed ID: 37477336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]