BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

679 related articles for article (PubMed ID: 32807178)

  • 1. Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection.
    Nguyen Quang N; Goudey S; Ségéral E; Mohammad A; Lemoine S; Blugeon C; Versapuech M; Paillart JC; Berlioz-Torrent C; Emiliani S; Gallois-Montbrun S
    Retrovirology; 2020 Aug; 17(1):25. PubMed ID: 32807178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A suboptimal 5' splice site downstream of HIV-1 splice site A1 is required for unspliced viral mRNA accumulation and efficient virus replication.
    Madsen JM; Stoltzfus CM
    Retrovirology; 2006 Feb; 3():10. PubMed ID: 16457729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The HIV-1 Tat Protein Enhances Splicing at the Major Splice Donor Site.
    Mueller N; Pasternak AO; Klaver B; Cornelissen M; Berkhout B; Das AT
    J Virol; 2018 Jul; 92(14):. PubMed ID: 29743356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression.
    Exline CM; Feng Z; Stoltzfus CM
    J Virol; 2008 Apr; 82(8):3921-31. PubMed ID: 18272582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excessive RNA splicing and inhibition of HIV-1 replication induced by modified U1 small nuclear RNAs.
    Mandal D; Feng Z; Stoltzfus CM
    J Virol; 2010 Dec; 84(24):12790-800. PubMed ID: 20926575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence Analysis of In Vivo-Expressed HIV-1 Spliced RNAs Reveals the Usage of New and Unusual Splice Sites by Viruses of Different Subtypes.
    Vega Y; Delgado E; de la Barrera J; Carrera C; Zaballos Á; Cuesta I; Mariño A; Ocampo A; Miralles C; Pérez-Castro S; Álvarez H; López-Miragaya I; García-Bodas E; Díez-Fuertes F; Thomson MM
    PLoS One; 2016; 11(6):e0158525. PubMed ID: 27355361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus.
    Prazsák I; Moldován N; Balázs Z; Tombácz D; Megyeri K; Szűcs A; Csabai Z; Boldogkői Z
    BMC Genomics; 2018 Dec; 19(1):873. PubMed ID: 30514211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation sequencing reveals HIV-1-mediated suppression of T cell activation and RNA processing and regulation of noncoding RNA expression in a CD4+ T cell line.
    Chang ST; Sova P; Peng X; Weiss J; Law GL; Palermo RE; Katze MG
    mBio; 2011; 2(5):. PubMed ID: 21933919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 1. Regulation of HIV-1 alternative RNA splicing and its role in virus replication.
    Stoltzfus CM
    Adv Virus Res; 2009; 74():1-40. PubMed ID: 19698894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing.
    Stoltzfus CM; Madsen JM
    Curr HIV Res; 2006 Jan; 4(1):43-55. PubMed ID: 16454710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic regulation of HIV-1 mRNA populations analyzed by single-molecule enrichment and long-read sequencing.
    Ocwieja KE; Sherrill-Mix S; Mukherjee R; Custers-Allen R; David P; Brown M; Wang S; Link DR; Olson J; Travers K; Schadt E; Bushman FD
    Nucleic Acids Res; 2012 Nov; 40(20):10345-55. PubMed ID: 22923523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel splice donor site in the gag-pol gene is required for HIV-1 RNA stability.
    Lützelberger M; Reinert LS; Das AT; Berkhout B; Kjems J
    J Biol Chem; 2006 Jul; 281(27):18644-51. PubMed ID: 16675444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of RNA structural diversity and its role in HIV-1 RNA splicing.
    Tomezsko PJ; Corbin VDA; Gupta P; Swaminathan H; Glasgow M; Persad S; Edwards MD; Mcintosh L; Papenfuss AT; Emery A; Swanstrom R; Zang T; Lan TCT; Bieniasz P; Kuritzkes DR; Tsibris A; Rouskin S
    Nature; 2020 Jun; 582(7812):438-442. PubMed ID: 32555469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behind the scenes of HIV-1 replication: Alternative splicing as the dependency factor on the quiet.
    Sertznig H; Hillebrand F; Erkelenz S; Schaal H; Widera M
    Virology; 2018 Mar; 516():176-188. PubMed ID: 29407375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo.
    Hermankova M; Siliciano JD; Zhou Y; Monie D; Chadwick K; Margolick JB; Quinn TC; Siliciano RF
    J Virol; 2003 Jul; 77(13):7383-92. PubMed ID: 12805437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIV-1: To Splice or Not to Splice, That Is the Question.
    Emery A; Swanstrom R
    Viruses; 2021 Jan; 13(2):. PubMed ID: 33530363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing HIV-1 Splicing by Using Next-Generation Sequencing.
    Emery A; Zhou S; Pollom E; Swanstrom R
    J Virol; 2017 Mar; 91(6):. PubMed ID: 28077653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two strong 5' splice sites and competing, suboptimal 3' splice sites involved in alternative splicing of human immunodeficiency virus type 1 RNA.
    O'Reilly MM; McNally MT; Beemon KL
    Virology; 1995 Nov; 213(2):373-85. PubMed ID: 7491762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FLAME: long-read bioinformatics tool for comprehensive spliceome characterization.
    Holmqvist I; Bäckerholm A; Tian Y; Xie G; Thorell K; Tang KW
    RNA; 2021 Oct; 27(10):1127-1139. PubMed ID: 34253685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Competing HIV-1 Splice Donor Sites Uncovers a Tight Cluster of Splicing Regulatory Elements within Exon 2/2b.
    Brillen AL; Walotka L; Hillebrand F; Müller L; Widera M; Theiss S; Schaal H
    J Virol; 2017 Jul; 91(14):. PubMed ID: 28446664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.