BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32807312)

  • 1. An automated method for defining anatomic coordinate systems in the hindfoot.
    Brown JA; Gale T; Anderst W
    J Biomech; 2020 Aug; 109():109951. PubMed ID: 32807312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the hindfoot axes of a multi-segment foot model to the underlying bony anatomy.
    Zavatsky AB; Paik AMH; Leitch J; Kothari A; Stebbins J
    J Biomech; 2019 Aug; 93():34-41. PubMed ID: 31221458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assignment of local coordinate systems and methods to calculate tibiotalar and subtalar kinematics: A systematic review.
    Lenz AL; Strobel MA; Anderson AM; Fial AV; MacWilliams BA; Krzak JJ; Kruger KM
    J Biomech; 2021 May; 120():110344. PubMed ID: 33744722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindfoot coronal alignment: a modified radiographic method.
    Johnson JE; Lamdan R; Granberry WF; Harris GF; Carrera GF
    Foot Ankle Int; 1999 Dec; 20(12):818-25. PubMed ID: 10609713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological features of the non-affected side of the hindfoot in patients with unilateral varus ankle osteoarthritis.
    Seki H; Nozaki S; Ogihara N; Kokubo T; Nagura T
    Ann Anat; 2024 Feb; 252():152198. PubMed ID: 38101707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Talus-derived reference coordinate system for 3D calcaneal assessment: A novel approach to improve morphological measurements.
    Wakker AM; Verhofstad MHJ; Visser JJ; Van Vledder MG; Van Walsum T
    J Orthop Res; 2024 May; ():. PubMed ID: 38711242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recommendation of minimal distal tibial length for long axis coordinate system definitions.
    Muhlrad EP; Peterson AC; Anderson AM; Aragon KC; Lisonbee RJ; MacWilliams BA; Kruger KM; Lenz AL
    J Biomech; 2024 Jun; 170():112153. PubMed ID: 38795543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marker placement sensitivity of the Oxford and Rizzoli foot models in adults and children.
    Schallig W; van den Noort JC; Maas M; Harlaar J; van der Krogt MM
    J Biomech; 2021 Sep; 126():110629. PubMed ID: 34320419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New anatomical reference systems for the bones of the foot and ankle complex: definitions and exploitation on clinical conditions.
    Conconi M; Pompili A; Sancisi N; Leardini A; Durante S; Belvedere C
    J Foot Ankle Res; 2021 Dec; 14(1):66. PubMed ID: 34930383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between hindfoot joint three-dimensional kinematics and the changes of the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot.
    Zhang YJ; Xu J; Wang Y; Lin XJ; Ma X
    Clin Biomech (Bristol, Avon); 2015 Feb; 30(2):153-8. PubMed ID: 25553652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomic aspects of tibiotalocalcaneal nail arthrodesis.
    Hyer CF; Cheney N
    J Foot Ankle Surg; 2013; 52(6):724-7. PubMed ID: 24021265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tibial coronal inclination on hindfoot kinematics: A biomechanical simulation study.
    Seki H; Nagura T; Suda Y; Ogihara N; Ito K; Matsumoto M; Nakamura M
    Proc Inst Mech Eng H; 2017 Oct; 231(10):952-958. PubMed ID: 28752791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foot bone kinematics as measured in a cadaveric robotic gait simulator.
    Whittaker EC; Aubin PM; Ledoux WR
    Gait Posture; 2011 Apr; 33(4):645-50. PubMed ID: 21458991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Reliability of Foot and Ankle Bone and Joint Kinematics Measured With Biplanar Videoradiography and Manual Scientific Rotoscoping.
    Maharaj JN; Kessler S; Rainbow MJ; D'Andrea SE; Konow N; Kelly LA; Lichtwark GA
    Front Bioeng Biotechnol; 2020; 8():106. PubMed ID: 32211386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional kinematic change of hindfoot during full weightbearing in standing: an analysis using upright computed tomography and 3D-3D surface registration.
    Kaneda K; Harato K; Oki S; Ota T; Yamada Y; Yamada M; Matsumoto M; Nakamura M; Nagura T; Jinzaki M
    J Orthop Surg Res; 2019 Nov; 14(1):355. PubMed ID: 31711523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin marker-based versus bone morphology-based coordinate systems of the hindfoot and forefoot.
    Hulshof CM; Schallig W; van den Noort JC; Streekstra GJ; Kleipool RP; Gg Dobbe J; Maas M; Harlaar J; van der Krogt MM
    J Biomech; 2024 Mar; 166():112001. PubMed ID: 38527409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability testing of the heel marker in three-dimensional gait analysis.
    McCahill J; Schallig W; Stebbins J; Prescott R; Theologis T; Harlaar J
    Gait Posture; 2021 Mar; 85():84-87. PubMed ID: 33517041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dimensions of the tarsal sinus and canal in different foot positions and its clinical implications.
    Kleipool RP; Blankevoort L; Ruijter JM; Kerkhoffs GMMJ; Oostra RJ
    Clin Anat; 2017 Nov; 30(8):1049-1057. PubMed ID: 28514509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Relationship Between Linear Osteological and Radiographic Measurements of the Human Calcaneus and Talus.
    Agoada D
    Anat Rec (Hoboken); 2018 Jan; 301(1):21-33. PubMed ID: 29024511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.
    Saraswat P; MacWilliams BA; Davis RB
    Gait Posture; 2012 Apr; 35(4):547-55. PubMed ID: 22192872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.