These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32807317)

  • 1. Localised apparent masses over the interface between a seated human body and a soft seat during vertical whole-body vibration.
    Liu C; Qiu Y
    J Biomech; 2020 Aug; 109():109887. PubMed ID: 32807317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.
    Liu C; Qiu Y; Griffin MJ
    J Biomech; 2017 Aug; 61():176-182. PubMed ID: 28780186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of elastic seats on seated body apparent mass responses to vertical whole body vibration.
    Dewangan KN; Rakheja S; Marcotte P; Shahmir A
    Ergonomics; 2015; 58(7):1175-90. PubMed ID: 26062686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration.
    Liu C; Qiu Y; Griffin MJ
    Ergonomics; 2015; 58(7):1207-19. PubMed ID: 25716324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of back support conditions on the apparent mass of seated occupants under horizontal vibration.
    Mandapuram SC; Rakheja S; Shiping MA; Demont RG; Boileau PE
    Ind Health; 2005 Jul; 43(3):421-35. PubMed ID: 16100919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A seated human model for predicting the coupled human-seat transmissibility exposed to fore-aft whole-body vibration.
    Kim E; Fard M; Kato K
    Appl Ergon; 2020 Apr; 84():102929. PubMed ID: 31884179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic interaction between the human body and the seat during vertical vibration: effect of inclination of the seat pan and the backrest on seat transmissibilities.
    Zhang X; Yu P; Li Y; Qiu Y; Sun C; Wang Z; Liu C
    Ergonomics; 2022 May; 65(5):691-703. PubMed ID: 34544317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A variable parameter single degree-of-freedom model for predicting the effects of sitting posture and vibration magnitude on the vertical apparent mass of the human body.
    Toward MG; Griffin MJ
    Ind Health; 2010; 48(5):654-62. PubMed ID: 20953082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.
    Basri B; Griffin MJ
    Appl Ergon; 2014 Nov; 45(6):1461-74. PubMed ID: 24793821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of the human-seat coupling in response to vibration.
    Kim E; Fard M; Kato K
    Ergonomics; 2017 Aug; 60(8):1085-1100. PubMed ID: 27780424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apparent mass of the seated human body during vertical vibration in the frequency range 2-100 Hz.
    Huang Y; Zhang P; Liang S
    Ergonomics; 2020 Sep; 63(9):1150-1163. PubMed ID: 32401623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the seated human body to whole-body vertical vibration: biodynamic responses to mechanical shocks.
    Zhou Z; Griffin MJ
    Ergonomics; 2017 Mar; 60(3):333-346. PubMed ID: 27206993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-vehicle vibration study of child safety seats.
    Giacomin J; Gallo S
    Ergonomics; 2003 Dec; 46(15):1500-12. PubMed ID: 14668171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodynamic response of seated human body to vertical and added lateral and roll vibrations.
    Wu J; Qiu Y; Zhou H
    Ergonomics; 2022 Apr; 65(4):546-560. PubMed ID: 34503399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of seating on the discomfort caused by mechanical shocks: Measurement and prediction of SEAT values.
    Patelli G; Griffin MJ
    Appl Ergon; 2019 Jan; 74():134-144. PubMed ID: 30487092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of apparent mass responses of human subjects seated on rigid and elastic seats under vertical vibration.
    Dewangan KN; Rakheja S; Marcotte P; Shahmir A; Patra SK
    Ergonomics; 2013; 56(12):1806-22. PubMed ID: 24088118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-body vibration exposure in unfavourable seated postures: apparent mass and seat-to-head transmissibility measurements in the fore-and-aft, lateral, and vertical directions.
    Amari M; Perrin N
    Ergonomics; 2023 Jan; 66(1):136-151. PubMed ID: 35543592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement and modelling of x-direction apparent mass of the seated human body-cushioned seat system.
    Stein GJ; Múcka P; Chmúrny R; Hinz B; Blüthner R
    J Biomech; 2007; 40(7):1493-503. PubMed ID: 16962599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the thickness of polyurethane foams at the seat pan and the backrest on fore-and-aft in-line and vertical cross-axis seat transmissibility when sitting with various contact conditions of backrest during fore-and-aft vibration.
    Zhang X; Zhang Q; Li Y; Liu C; Qiu Y
    Appl Ergon; 2021 May; 93():103354. PubMed ID: 33516943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The apparent mass of the seated human body: vertical vibration.
    Fairley TE; Griffin MJ
    J Biomech; 1989; 22(2):81-94. PubMed ID: 2708398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.