BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32807886)

  • 1. Post-translational formation of strained cyclophanes in bacteria.
    Nguyen TQN; Tooh YW; Sugiyama R; Nguyen TPD; Purushothaman M; Leow LC; Hanif K; Yong RHS; Agatha I; Winnerdy FR; Gugger M; Phan AT; Morinaka BI
    Nat Chem; 2020 Nov; 12(11):1042-1053. PubMed ID: 32807886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial cyclophane-containing RiPPs from radical SAM enzymes.
    Phan CS; Morinaka BI
    Nat Prod Rep; 2024 May; 41(5):708-720. PubMed ID: 38047390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and Promiscuity Studies of Three-Residue Cyclophane Forming Enzymes Show Nonnative C-C Cross-Linked Products and Leader-Dependent Cyclization.
    Suarez AFL; Nguyen TQN; Chang L; Tooh YW; Yong RHS; Leow LC; Koh IYF; Chen H; Koh JWH; Selvanayagam A; Lim V; Tan YE; Agatha I; Winnerdy FR; Morinaka BI
    ACS Chem Biol; 2024 Mar; 19(3):774-783. PubMed ID: 38417140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Prevalent Group of Actinobacterial Radical SAM/SPASM Maturases Involved in Triceptide Biosynthesis.
    Phan CS; Morinaka BI
    ACS Chem Biol; 2022 Dec; 17(12):3284-3289. PubMed ID: 36454686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and determination of the absolute configuration of cavicularin by a symmetrization/asymmetrization approach.
    Takiguchi H; Ohmori K; Suzuki K
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10472-6. PubMed ID: 23956143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Configurationally Stable Atropoenantiomers in Macrocyclic Natural Products and the Chrysophaentin Family.
    Bewley CA; Sulikowski GA; Yang ZJ; Bifulco G; Cho HM; Fullenkamp CR
    Acc Chem Res; 2023 Feb; 56(4):414-424. PubMed ID: 36731116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Biosynthetic Landscape of Triceptides Reveals Radical SAM Enzymes That Catalyze Cyclophane Formation on Tyr- and His-Containing Motifs.
    Sugiyama R; Suarez AFL; Morishita Y; Nguyen TQN; Tooh YW; Roslan MNHB; Lo Choy J; Su Q; Goh WY; Gunawan GA; Wong FT; Morinaka BI
    J Am Chem Soc; 2022 Jul; 144(26):11580-11593. PubMed ID: 35729768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Natural-Product-Like Cyclophane-Braced Peptide Macrocycles via sp
    Li B; Li X; Han B; Chen Z; Zhang X; He G; Chen G
    J Am Chem Soc; 2019 Jun; 141(23):9401-9407. PubMed ID: 31117666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives.
    Steffan N; Grundmann A; Yin WB; Kremer A; Li SM
    Curr Med Chem; 2009; 16(2):218-31. PubMed ID: 19149573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular synthesis of pi-acceptor cyclophanes derived from 1,4,5,8-naphthalenetetracarboxylic diimide and 1,5-dinitronaphthalene.
    Chen G; Lean JT; Alcalá M; Mallouk TE
    J Org Chem; 2001 May; 66(9):3027-34. PubMed ID: 11325267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building upon Nature's Framework: Overview of Key Strategies Toward Increasing Drug-Like Properties of Natural Product Cyclopeptides and Macrocycles.
    Blanco MJ
    Methods Mol Biol; 2019; 2001():203-233. PubMed ID: 31134573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constrained Cyclopeptides: Biaryl Formation through Pd-Catalyzed C-H Activation in Peptides-Structural Control of the Cyclization vs. Cyclodimerization Outcome.
    Mendive-Tapia L; Bertran A; García J; Acosta G; Albericio F; Lavilla R
    Chemistry; 2016 Sep; 22(37):13114-9. PubMed ID: 27490359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strained cyclophane natural products: macrocyclization at its limits.
    Gulder T; Baran PS
    Nat Prod Rep; 2012 Aug; 29(8):899-934. PubMed ID: 22729238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and structural analysis of dehydrophenylalanine cyclophanes.
    Gibson SE; Jones JO; Kalindjian SB; Knight JD; Steed JW; Tozer MJ
    Chem Commun (Camb); 2002 Sep; (17):1938-9. PubMed ID: 12271683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tryptophan connection: cyclic peptide natural products linked
    Swain JA; Walker SR; Calvert MB; Brimble MA
    Nat Prod Rep; 2022 Feb; 39(2):410-443. PubMed ID: 34581375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Triceptide Maturase OscB Catalyzes Uniform Cyclophane Topology and Accepts Diverse Gly-Rich Precursor Peptides.
    Purushothaman M; Chang L; Zhong RJ; Morinaka BI
    ACS Chem Biol; 2024 Jun; 19(6):1229-1236. PubMed ID: 38742762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp
    Zhang X; Lu G; Sun M; Mahankali M; Ma Y; Zhang M; Hua W; Hu Y; Wang Q; Chen J; He G; Qi X; Shen W; Liu P; Chen G
    Nat Chem; 2018 May; 10(5):540-548. PubMed ID: 29610465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Topologically Distinct Modified Peptide with Multiple Bicyclic Core Motifs Expands the Diversity of Microviridin-Like Peptides.
    Roh H; Han Y; Lee H; Kim S
    Chembiochem; 2019 Apr; 20(8):1051-1059. PubMed ID: 30576039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.