These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32807952)

  • 1. DNA damage triggers reprogramming of differentiated cells into stem cells in Physcomitrella.
    Gu N; Tamada Y; Imai A; Palfalvi G; Kabeya Y; Shigenobu S; Ishikawa M; Angelis KJ; Chen C; Hasebe M
    Nat Plants; 2020 Sep; 6(9):1098-1105. PubMed ID: 32807952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of reprogramming of differentiated cells into stem cells in the moss Physcomitrium patens.
    Ishikawa M; Hasebe M
    Curr Opin Plant Biol; 2022 Feb; 65():102123. PubMed ID: 34735974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming.
    Ishikawa M; Morishita M; Higuchi Y; Ichikawa S; Ishikawa T; Nishiyama T; Kabeya Y; Hiwatashi Y; Kurata T; Kubo M; Shigenobu S; Tamada Y; Sato Y; Hasebe M
    Nat Plants; 2019 Jul; 5(7):681-690. PubMed ID: 31285563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cells reprogramming to stem cells inhibit the reprogramming of adjacent cells in the moss Physcomitrella patens.
    Sato Y; Sugimoto N; Hirai T; Imai A; Kubo M; Hiwatashi Y; Nishiyama T; Hasebe M
    Sci Rep; 2017 May; 7(1):1909. PubMed ID: 28507289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens.
    Sakakibara K; Reisewitz P; Aoyama T; Friedrich T; Ando S; Sato Y; Tamada Y; Nishiyama T; Hiwatashi Y; Kurata T; Ishikawa M; Deguchi H; Rensing SA; Werr W; Murata T; Hasebe M; Laux T
    Development; 2014 Apr; 141(8):1660-70. PubMed ID: 24715456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physcomitrella cyclin-dependent kinase A links cell cycle reactivation to other cellular changes during reprogramming of leaf cells.
    Ishikawa M; Murata T; Sato Y; Nishiyama T; Hiwatashi Y; Imai A; Kimura M; Sugimoto N; Akita A; Oguri Y; Friedman WE; Hasebe M; Kubo M
    Plant Cell; 2011 Aug; 23(8):2924-38. PubMed ID: 21862705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Importance of ATM and ATR in
    Martens M; Horres R; Wendeler E; Reiss B
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32640722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens.
    Li C; Sako Y; Imai A; Nishiyama T; Thompson K; Kubo M; Hiwatashi Y; Kabeya Y; Karlson D; Wu SH; Ishikawa M; Murata T; Benfey PN; Sato Y; Tamada Y; Hasebe M
    Nat Commun; 2017 Jan; 8():14242. PubMed ID: 28128346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital gene expression profiling by 5'-end sequencing of cDNAs during reprogramming in the moss Physcomitrella patens.
    Nishiyama T; Miyawaki K; Ohshima M; Thompson K; Nagashima A; Hasebe M; Kurata T
    PLoS One; 2012; 7(5):e36471. PubMed ID: 22574165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class III HD-Zip activity coordinates leaf development in Physcomitrella patens.
    Yip HK; Floyd SK; Sakakibara K; Bowman JL
    Dev Biol; 2016 Nov; 419(1):184-197. PubMed ID: 26808209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens.
    Ishikawa M; Hasebe M
    J Plant Res; 2015 May; 128(3):399-405. PubMed ID: 25801272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
    Kofuji R; Hasebe M
    Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation.
    Kubo M; Nishiyama T; Tamada Y; Sano R; Ishikawa M; Murata T; Imai A; Lang D; Demura T; Reski R; Hasebe M
    Nucleic Acids Res; 2019 May; 47(9):4539-4553. PubMed ID: 30873540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome of protoplasts reprogrammed into stem cells in Physcomitrella patens.
    Xiao L; Zhang L; Yang G; Zhu H; He Y
    PLoS One; 2012; 7(4):e35961. PubMed ID: 22545152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phyllotaxis from a Single Apical Cell.
    Véron E; Vernoux T; Coudert Y
    Trends Plant Sci; 2021 Feb; 26(2):124-131. PubMed ID: 33097400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotoxin induced mutagenesis in the model plant Physcomitrella patens.
    Holá M; Kozák J; Vágnerová R; Angelis KJ
    Biomed Res Int; 2013; 2013():535049. PubMed ID: 24383055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens.
    Kamisugi Y; Whitaker JW; Cuming AC
    PLoS One; 2016; 11(8):e0161204. PubMed ID: 27537368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CELLULOSE SYNTHASE (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens.
    Goss CA; Brockmann DJ; Bushoven JT; Roberts AW
    Planta; 2012 Jun; 235(6):1355-67. PubMed ID: 22215046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens.
    Aoyama T; Hiwatashi Y; Shigyo M; Kofuji R; Kubo M; Ito M; Hasebe M
    Development; 2012 Sep; 139(17):3120-9. PubMed ID: 22833122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensive nuclear reprogramming and endoreduplication in mature leaf during floral induction.
    Del Prete S; Molitor A; Charif D; Bessoltane N; Soubigou-Taconnat L; Guichard C; Brunaud V; Granier F; Fransz P; Gaudin V
    BMC Plant Biol; 2019 Apr; 19(1):135. PubMed ID: 30971226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.