These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32807998)

  • 1. Polydopamine free radical scavengers.
    Hu J; Yang L; Yang P; Jiang S; Liu X; Li Y
    Biomater Sci; 2020 Sep; 8(18):4940-4950. PubMed ID: 32807998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of polydopamine's redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities.
    Liu H; Qu X; Tan H; Song J; Lei M; Kim E; Payne GF; Liu C
    Acta Biomater; 2019 Apr; 88():181-196. PubMed ID: 30818052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydopamine antibacterial materials.
    Fu Y; Yang L; Zhang J; Hu J; Duan G; Liu X; Li Y; Gu Z
    Mater Horiz; 2021 Jun; 8(6):1618-1633. PubMed ID: 34846495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy.
    d'Ischia M; Napolitano A; Ball V; Chen CT; Buehler MJ
    Acc Chem Res; 2014 Dec; 47(12):3541-50. PubMed ID: 25340503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease.
    Bao X; Zhao J; Sun J; Hu M; Yang X
    ACS Nano; 2018 Sep; 12(9):8882-8892. PubMed ID: 30028940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin two-dimensional polydopamine nanosheets for multiple free radical scavenging and wound healing.
    Jing Y; Deng Z; Yang X; Li L; Gao Y; Li W
    Chem Commun (Camb); 2020 Sep; 56(74):10875-10878. PubMed ID: 32940278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Grafting to Polydopamine Free Radicals for Universal Surface Functionalization.
    Nothling MD; Bailey CG; Fillbrook LL; Wang G; Gao Y; McCamey DR; Monfared M; Wong S; Beves JE; Stenzel MH
    J Am Chem Soc; 2022 Apr; 144(15):6992-7000. PubMed ID: 35404602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury.
    Zhao H; Zeng Z; Liu L; Chen J; Zhou H; Huang L; Huang J; Xu H; Xu Y; Chen Z; Wu Y; Guo W; Wang JH; Wang J; Liu Z
    Nanoscale; 2018 Apr; 10(15):6981-6991. PubMed ID: 29610822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mussel-Inspired Persistent ROS-Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly.
    Zhou T; Yan L; Xie C; Li P; Jiang L; Fang J; Zhao C; Ren F; Wang K; Wang Y; Zhang H; Guo T; Lu X
    Small; 2019 Jun; 15(25):e1805440. PubMed ID: 31106983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics.
    Wang Z; Zou Y; Li Y; Cheng Y
    Small; 2020 May; 16(18):e1907042. PubMed ID: 32220006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine.
    Cheng W; Zeng X; Chen H; Li Z; Zeng W; Mei L; Zhao Y
    ACS Nano; 2019 Aug; 13(8):8537-8565. PubMed ID: 31369230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydopamine-Based 3D Colloidal Photonic Materials: Structural Color Balls and Fibers from Melanin-Like Particles with Polydopamine Shell Layers.
    Kohri M; Yanagimoto K; Kawamura A; Hamada K; Imai Y; Watanabe T; Ono T; Taniguchi T; Kishikawa K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7640-7648. PubMed ID: 28661653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the influence of substrate on the growth rate, morphology and covalent structure of surface adherent polydopamine films.
    Svoboda J; Král M; Dendisová M; Matějka P; Pop-Georgievski O
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111897. PubMed ID: 34118533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP.
    Huang H; Liu M; Xu D; Mao L; Huang Q; Deng F; Tian J; Wen Y; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110157. PubMed ID: 31753361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric determination of polyphenols via a gold nanoseeds-decorated polydopamine film.
    Scroccarello A; Della Pelle F; Fratini E; Ferraro G; Scarano S; Palladino P; Compagnone D
    Mikrochim Acta; 2020 Apr; 187(5):267. PubMed ID: 32285210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydopamine nanoparticles-assisted impedimetric sensor towards label-free lung cancer cell detection.
    Bolat G; Vural OA; Yaman YT; Abaci S
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111549. PubMed ID: 33321613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications.
    Liu M; Zeng G; Wang K; Wan Q; Tao L; Zhang X; Wei Y
    Nanoscale; 2016 Sep; 8(38):16819-16840. PubMed ID: 27704068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base.
    Huang C; Wang X; Yang P; Shi S; Duan G; Liu X; Li Y
    Macromol Rapid Commun; 2023 Jan; 44(1):e2100916. PubMed ID: 35080287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of concentration and molecular weight of chitosan and its derivative on the free radical scavenging ability.
    Li H; Xu Q; Chen Y; Wan A
    J Biomed Mater Res A; 2014 Mar; 102(3):911-6. PubMed ID: 23589358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, properties and applications of mussel-inspired polydopamine.
    Ho CC; Ding SJ
    J Biomed Nanotechnol; 2014 Oct; 10(10):3063-84. PubMed ID: 25992429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.