These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32808118)
1. Mechanical Influence of Surrounding Soft Tissue on Bone Regeneration Processes: A Bone Lengthening Study. Blázquez-Carmona P; Mora-Macías J; Sanz-Herrera JA; Morgaz J; Navarrete-Calvo R; Domínguez J; Reina-Romo E Ann Biomed Eng; 2021 Feb; 49(2):642-652. PubMed ID: 32808118 [TBL] [Abstract][Full Text] [Related]
2. Mechanobiology of Bone Consolidation During Distraction Osteogenesis: Bone Lengthening Vs. Bone Transport. Blázquez-Carmona P; Mora-Macías J; Morgaz J; Fernández-Sarmiento JA; Domínguez J; Reina-Romo E Ann Biomed Eng; 2021 Apr; 49(4):1209-1221. PubMed ID: 33111968 [TBL] [Abstract][Full Text] [Related]
3. Model of the distraction callus tissue behavior during bone transport based in experiments in vivo. Mora-Macías J; Reina-Romo E; Domínguez J J Mech Behav Biomed Mater; 2016 Aug; 61():419-430. PubMed ID: 27111628 [TBL] [Abstract][Full Text] [Related]
4. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation. Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the mechanical environment during distraction osteogenesis. Waanders NA; Richards M; Steen H; Kuhn JL; Goldstein SA; Goulet JA Clin Orthop Relat Res; 1998 Apr; (349):225-34. PubMed ID: 9584387 [TBL] [Abstract][Full Text] [Related]
6. Novel approach to estimate distraction forces in distraction osteogenesis and application in the human lower leg. Bachmeier AT; Euler E; Bader R; Böcker W; Thaller PH J Mech Behav Biomed Mater; 2022 Apr; 128():105133. PubMed ID: 35217291 [TBL] [Abstract][Full Text] [Related]
7. Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation. Brunner UH; Cordey J; Schweiberer L; Perren SM Clin Orthop Relat Res; 1994 Apr; (301):147-55. PubMed ID: 8156665 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the Efficiency of Distraction Osteogenesis through Rate-Varying Distraction: A Computational Study. Fu R; Feng Y; Bertrand D; Du T; Liu Y; Willie BM; Yang H Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769163 [TBL] [Abstract][Full Text] [Related]
10. Histological evolution of the regenerate during bone transport: an experimental study in sheep. López-Pliego EM; Giráldez-Sánchez MÁ; Mora-Macías J; Reina-Romo E; Domínguez J Injury; 2016 Sep; 47 Suppl 3():S7-S14. PubMed ID: 27692111 [TBL] [Abstract][Full Text] [Related]
11. Reamed Intramedullary Nailing has an Adverse Effect on Bone Regeneration During the Distraction Phase in Tibial Lengthening. Ryu KJ; Kim BH; Hwang JH; Kim HW; Lee DH Clin Orthop Relat Res; 2016 Mar; 474(3):816-24. PubMed ID: 26507338 [TBL] [Abstract][Full Text] [Related]
12. In vivo study of human mandibular distraction osteogenesis. Part I: bone transport force determination. Bonnet AS; Dubois G; Lipinski P; Schouman T Acta Bioeng Biomech; 2012; 14(4):3-14. PubMed ID: 23394065 [TBL] [Abstract][Full Text] [Related]
13. Value of ultrasonography and radiography for the study of bone regeneration in lengthening of the fourth ray in brachymetatarsia. Neretin AS; Menshchikova TI Foot Ankle Surg; 2021 Jun; 27(4):432-438. PubMed ID: 32561159 [TBL] [Abstract][Full Text] [Related]
14. NELL1 promotes high-quality bone regeneration in rat femoral distraction osteogenesis model. Xue J; Peng J; Yuan M; Wang A; Zhang L; Liu S; Fan M; Wang Y; Xu W; Ting K; Zhang X; Lu S Bone; 2011 Mar; 48(3):485-95. PubMed ID: 20959151 [TBL] [Abstract][Full Text] [Related]
15. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. Isaksson H; Comas O; van Donkelaar CC; Mediavilla J; Wilson W; Huiskes R; Ito K J Biomech; 2007; 40(9):2002-11. PubMed ID: 17112532 [TBL] [Abstract][Full Text] [Related]
16. Reduced gap strains induce changes in bone regeneration during distraction. Richards M; Waanders NA; Weiss JA; Bhatia V; Senunas LE; Schaffler MB; Goldstein SA; Goulet JA J Biomech Eng; 1999 Jun; 121(3):348-55. PubMed ID: 10396702 [TBL] [Abstract][Full Text] [Related]
17. Transsutural distraction and tissue regeneration of the midfacial skeleton: experimental studies in growing dogs. Yusheng Y; Chengyue W; Zhiying W; Guijun W Cleft Palate Craniofac J; 2014 May; 51(3):326-33. PubMed ID: 23369015 [TBL] [Abstract][Full Text] [Related]
18. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo. Mora-Macías J; Reina-Romo E; Domínguez J Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818 [TBL] [Abstract][Full Text] [Related]
19. Distraction osteogenesis after acute limb-shortening for segmental tibial defects. Comparison of a monofocal and a bifocal technique in rabbits. Meffert RH; Inoue N; Tis JE; Brug E; Chao EY J Bone Joint Surg Am; 2000 Jun; 82(6):799-808. PubMed ID: 10859099 [TBL] [Abstract][Full Text] [Related]
20. Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]