These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32808596)

  • 1. Synthesis of gold nanostructures using glycine as the reducing agent.
    Lee J; Kim S; Mubeen S; Mulchandani A; Chen W; Choa Y; Myung NV
    Nanotechnology; 2020 Nov; 31(45):455601. PubMed ID: 32808596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel and greener approach for shape controlled synthesis of gold and gold-silver core shell nanostructure and their application in optical coatings.
    Sinha T; Ahmaruzzaman M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():280-288. PubMed ID: 25791885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-mediated shape- and size-tunable synthesis of gold nanostructures.
    Kim J; Rheem Y; Yoo B; Chong Y; Bozhilov KN; Kim D; Sadowsky MJ; Hur HG; Myung NV
    Acta Biomater; 2010 Jul; 6(7):2681-9. PubMed ID: 20083240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.
    Chandran SP; Chaudhary M; Pasricha R; Ahmad A; Sastry M
    Biotechnol Prog; 2006; 22(2):577-83. PubMed ID: 16599579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles.
    Rai A; Singh A; Ahmad A; Sastry M
    Langmuir; 2006 Jan; 22(2):736-41. PubMed ID: 16401125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmentally benign in situ synthesis of gold nanotapes using carboxymethyl cellulose.
    Bhattacharjee RR; Rashid MH; Mandal TK
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3610-5. PubMed ID: 19051918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From nanoparticles to crystals: one-pot programmable biosynthesis of photothermal gold structures and their use for biomedical applications.
    Nudelman R; Alhmoud H; Delalat B; Kaur I; Vitkin A; Bourgeois L; Goldfarb I; Cifuentes-Rius A; Voelcker NH; Richter S
    J Nanobiotechnology; 2022 Nov; 20(1):482. PubMed ID: 36384747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled synthesis of gold nanostructures by a thermal approach.
    Zhou M; Bron M; Schuhmann W
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3465-72. PubMed ID: 19051896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature.
    Zhang L; Zhao Y; Lin Z; Gu F; Lau SP; Li L; Chai Y
    Nanoscale; 2015 Aug; 7(32):13420-6. PubMed ID: 26214749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of gold nanoparticles using various amino acids.
    Maruyama T; Fujimoto Y; Maekawa T
    J Colloid Interface Sci; 2015 Jun; 447():254-7. PubMed ID: 25591824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone).
    Lim B; Camargo PH; Xia Y
    Langmuir; 2008 Sep; 24(18):10437-42. PubMed ID: 18712890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial synthesis of multishaped gold nanostructures.
    Das SK; Das AR; Guha AK
    Small; 2010 May; 6(9):1012-21. PubMed ID: 20376859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties.
    Raula M; Rashid MH; Paira TK; Dinda E; Mandal TK
    Langmuir; 2010 Jun; 26(11):8769-82. PubMed ID: 20201580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step controlled synthesis of anisotropic gold nanostructures with aniline as the reductant in aqueous solution.
    Guo Z; Zhang Y; Huang L; Wang M; Wang J; Sun J; Xu L; Gu N
    J Colloid Interface Sci; 2007 May; 309(2):518-23. PubMed ID: 17300797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of zeatin with gold ions and biomimetic formation of gold complexes and nanoparticles.
    Fowles CC; Smoak EM; Banerjee IA
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):250-8. PubMed ID: 20392614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata.
    He S; Zhang Y; Guo Z; Gu N
    Biotechnol Prog; 2008; 24(2):476-80. PubMed ID: 18293997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant.
    Reddy AS; Chen CY; Chen CC; Jean JS; Fan CW; Chen HR; Wang JC; Nimje VR
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6693-9. PubMed ID: 19908586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution.
    Ankamwar B; Damle C; Ahmad A; Sastry M
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1665-71. PubMed ID: 16245525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium.
    Dinda E; Si S; Kotal A; Mandal TK
    Chemistry; 2008; 14(18):5528-37. PubMed ID: 18470852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of gold nanowire networks and nanoparticles by tyrosine reduction of chloroaurate.
    Ju JJ; Lu CX; Jan JS
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2802-9. PubMed ID: 22755126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.