These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32808618)

  • 1. Quantum confinement in group III-V semiconductor 2D nanostructures.
    Cipriano LA; Di Liberto G; Tosoni S; Pacchioni G
    Nanoscale; 2020 Sep; 12(33):17494-17501. PubMed ID: 32808618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasiparticle semiconductor band structures including spin-orbit interactions.
    Malone BD; Cohen ML
    J Phys Condens Matter; 2013 Mar; 25(10):105503. PubMed ID: 23396813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum confinement in chalcogenides 2D nanostructures from first principles.
    Das T; Di Liberto G; Pacchioni G
    J Phys Condens Matter; 2022 Aug; 34(40):. PubMed ID: 35868296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of an excitonic ground state in InAs/InSb quantum dots.
    He L; Bester G; Zunger A
    Phys Rev Lett; 2005 Jan; 94(1):016801. PubMed ID: 15698111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.
    Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ
    ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and optical properties of tapered tetrahedral semiconductor nanocrystals.
    Na G; Li Y; Wang X; Fu Y; Zhang L
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33836511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carrier multiplication in semiconductor nanocrystals: theoretical screening of candidate materials based on band-structure effects.
    Luo JW; Franceschetti A; Zunger A
    Nano Lett; 2008 Oct; 8(10):3174-81. PubMed ID: 18729418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS).
    Spittel D; Poppe J; Meerbach C; Ziegler C; Hickey SG; Eychmüller A
    ACS Nano; 2017 Dec; 11(12):12174-12184. PubMed ID: 29178801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and performance of GaSb-based quantum cascade detectors.
    Giparakis M; Windischhofer A; Isceri S; Schrenk W; Schwarz B; Strasser G; Andrews AM
    Nanophotonics; 2024 Apr; 13(10):1773-1780. PubMed ID: 38681680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron states in semiconductor quantum dots.
    Dhayal SS; Ramaniah LM; Ruda HE; Nair SV
    J Chem Phys; 2014 Nov; 141(20):204702. PubMed ID: 25429952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The scaling of the effective band gaps in indium-arsenide quantum dots and wires.
    Wang F; Yu H; Jeong S; Pietryga JM; Hollingsworth JA; Gibbons PC; Buhro WE
    ACS Nano; 2008 Sep; 2(9):1903-13. PubMed ID: 19206431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of exciton behavior in type-II self-assembled GaSb/GaAs quantum dots.
    Qiu F; Qiu W; Li Y; Wang X; Zhang Y; Zhou X; Lv Y; Sun Y; Deng H; Hu S; Dai N; Wang C; Yang Y; Zhuang Q; Hayne M; Krier A
    Nanotechnology; 2016 Feb; 27(6):065602. PubMed ID: 26684716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Principle Calculation of Accurate Electronic and Related Properties of Zinc Blende Indium Arsenide (zb-InAs).
    Diakite YI; Malozovsky Y; Bamba CO; Franklin L; Bagayoko D
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric Confinement and Excitonic Effects in Two-Dimensional Nanoplatelets.
    Ji B; Rabani E; Efros AL; Vaxenburg R; Ashkenazi O; Azulay D; Banin U; Millo O
    ACS Nano; 2020 Jul; 14(7):8257-8265. PubMed ID: 32584026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films.
    Miller EM; Kroupa DM; Zhang J; Schulz P; Marshall AR; Kahn A; Lany S; Luther JM; Beard MC; Perkins CL; van de Lagemaat J
    ACS Nano; 2016 Mar; 10(3):3302-11. PubMed ID: 26895310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum confinement effects on electronic photomobilities at nanostructured semiconductor surfaces: Si(111) without and with adsorbed Ag clusters.
    Hembree RH; Vazhappilly T; Micha DA
    J Chem Phys; 2017 Dec; 147(22):224703. PubMed ID: 29246045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Throughput Study of the Electronic Structure and Physical Properties of Short-Period (GaAs)
    Liu QL; Zhao ZY; Yi JH; Zhang ZY
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band-inverted gaps in InAs/GaSb and GaSb/InAs core-shell nanowires.
    Luo N; Huang GY; Liao G; Ye LH; Xu HQ
    Sci Rep; 2016 Dec; 6():38698. PubMed ID: 27924856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.