These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 32808767)
1. Highly Enhanced Antitumor Immunity by a Three-Barreled Strategy of the l-Arginine-Promoted Nanovaccine and Gene-Mediated PD-L1 Blockade. Hu Y; Lin L; Chen J; Hao K; Zhang S; Guo X; Guo Z; Tian H; Chen X ACS Appl Mater Interfaces; 2020 Sep; 12(37):41127-41137. PubMed ID: 32808767 [TBL] [Abstract][Full Text] [Related]
2. Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. Hu Y; Lin L; Chen J; Maruyama A; Tian H; Chen X Biomaterials; 2020 Sep; 252():120114. PubMed ID: 32422491 [TBL] [Abstract][Full Text] [Related]
3. Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Guan X; Chen J; Hu Y; Lin L; Sun P; Tian H; Chen X Biomaterials; 2018 Jul; 171():198-206. PubMed ID: 29698869 [TBL] [Abstract][Full Text] [Related]
4. A generally minimalist strategy of constructing biomineralized high-efficiency personalized nanovaccine combined with immune checkpoint blockade for cancer immunotherapy. Zhang S; Feng Y; Meng M; Li Z; Li H; Lin L; Xu C; Chen J; Hao K; Tang Z; Tian H; Chen X Biomaterials; 2022 Oct; 289():121794. PubMed ID: 36113330 [TBL] [Abstract][Full Text] [Related]
5. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine. Kim H; Khanna V; Kucaba TA; Zhang W; Ferguson DM; Griffith TS; Panyam J Mol Pharm; 2019 Mar; 16(3):1200-1210. PubMed ID: 30620878 [TBL] [Abstract][Full Text] [Related]
6. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Xu J; Wang H; Xu L; Chao Y; Wang C; Han X; Dong Z; Chang H; Peng R; Cheng Y; Liu Z Biomaterials; 2019 Jul; 207():1-9. PubMed ID: 30947117 [TBL] [Abstract][Full Text] [Related]
7. Nanovaccine Incorporated with Hydroxychloroquine Enhances Antigen Cross-Presentation and Promotes Antitumor Immune Responses. Liu J; Liu X; Han Y; Zhang J; Liu D; Ma G; Li C; Liu L; Kong D ACS Appl Mater Interfaces; 2018 Sep; 10(37):30983-30993. PubMed ID: 30136844 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy. Zhao H; Xu J; Li Y; Guan X; Han X; Xu Y; Zhou H; Peng R; Wang J; Liu Z ACS Nano; 2019 Nov; 13(11):13127-13135. PubMed ID: 31710460 [TBL] [Abstract][Full Text] [Related]
9. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. Dong H; Wen ZF; Chen L; Zhou N; Liu H; Dong S; Hu HM; Mou Y Int J Nanomedicine; 2018; 13():3353-3365. PubMed ID: 29922056 [TBL] [Abstract][Full Text] [Related]
10. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. Jiang M; Zhao L; Cui X; Wu X; Zhang Y; Guan X; Ma J; Zhang W J Adv Res; 2022 Jan; 35():49-60. PubMed ID: 35003793 [TBL] [Abstract][Full Text] [Related]
11. PD-L1 siRNA hitched polyethyleneimine-elastase constituting nanovesicle induces tumor immunogenicity and PD-L1 silencing for synergistic antitumor immunotherapy. Du L; Gong Y; Zhang X; Sun J; Gao F; Shen M; Bai H; Yang T; Cheng X; Li S; Peng J; Liu Z; Ding S; Chen J; Cheng W J Nanobiotechnology; 2024 Jul; 22(1):442. PubMed ID: 39068444 [TBL] [Abstract][Full Text] [Related]
12. Identification of a novel DEC-205 binding peptide to develop dendritic cell-targeting nanovaccine for cancer immunotherapy. Zheng J; Wang M; Pang L; Wang S; Kong Y; Zhu X; Zhou X; Wang X; Chen C; Ning H; Zhao W; Zhai W; Qi Y; Wu Y; Gao Y J Control Release; 2024 Sep; 373():568-582. PubMed ID: 39067792 [TBL] [Abstract][Full Text] [Related]
13. A Visible Codelivery Nanovaccine of Antigen and Adjuvant with Self-Carrier for Cancer Immunotherapy. Dong X; Liang J; Yang A; Qian Z; Kong D; Lv F ACS Appl Mater Interfaces; 2019 Feb; 11(5):4876-4888. PubMed ID: 30628437 [TBL] [Abstract][Full Text] [Related]
14. CD47KO/CRT dual-bioengineered cell membrane-coated nanovaccine combined with anti-PD-L1 antibody for boosting tumor immunotherapy. Liu S; Wu J; Feng Y; Guo X; Li T; Meng M; Chen J; Chen D; Tian H Bioact Mater; 2023 Apr; 22():211-224. PubMed ID: 36246666 [TBL] [Abstract][Full Text] [Related]
15. Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Chen J; Fang H; Hu Y; Wu J; Zhang S; Feng Y; Lin L; Tian H; Chen X Bioact Mater; 2022 Jan; 7():167-180. PubMed ID: 34466725 [TBL] [Abstract][Full Text] [Related]
16. Dendritic Cell-Targeted Nanoparticles Enhance T Cell Activation and Antitumor Immune Responses by Boosting Antigen Presentation and Blocking PD-L1 Pathways. Srivastava P; Rütter M; Antoniraj G; Ventura Y; David A ACS Appl Mater Interfaces; 2024 Oct; 16(40):53577-53590. PubMed ID: 39344665 [TBL] [Abstract][Full Text] [Related]
17. A TLR3-Specific Adjuvant Relieves Innate Resistance to PD-L1 Blockade without Cytokine Toxicity in Tumor Vaccine Immunotherapy. Takeda Y; Kataoka K; Yamagishi J; Ogawa S; Seya T; Matsumoto M Cell Rep; 2017 May; 19(9):1874-1887. PubMed ID: 28564605 [TBL] [Abstract][Full Text] [Related]
18. Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. Guan X; Lin L; Chen J; Hu Y; Sun P; Tian H; Maruyama A; Chen X J Control Release; 2019 Jan; 293():104-112. PubMed ID: 30476528 [TBL] [Abstract][Full Text] [Related]
19. Synergistically enhanced cancer immunotherapy by combining protamine-based nanovaccine with PD-L1 gene silence nanoparticle. Jiang M; Chen W; Sun Y; Zeng J; Ma L; Gong J; Guan X; Lu K; Zhang W Int J Biol Macromol; 2023 Jul; 242(Pt 4):125223. PubMed ID: 37276908 [TBL] [Abstract][Full Text] [Related]
20. Co-immunizing with PD-L1 induces CD8 Guo S; Xiao P; Li B; Wang W; Wang S; Lv T; Xu X; Chen C; Huang L; Li Z; Tang L; Peng L; Wang H Int Immunopharmacol; 2020 Jul; 84():106516. PubMed ID: 32334387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]