These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32808958)

  • 1. Dynamics of the reaction CH
    Chen TY; Lee YP
    Phys Chem Chem Phys; 2020 Aug; 22(31):17540-17553. PubMed ID: 32808958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Reaction CH
    Ji YT; Lee YP
    J Phys Chem A; 2021 Sep; 125(38):8373-8385. PubMed ID: 34524829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed mechanism of the CH₂I + O₂ reaction: yield and self-reaction of the simplest Criegee intermediate CH₂OO.
    Ting WL; Chang CH; Lee YF; Matsui H; Lee YP; Lin JJ
    J Chem Phys; 2014 Sep; 141(10):104308. PubMed ID: 25217917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared Emission from Photodissociation of Methyl Formate [HC(O)OCH
    Lanfri L; Wang YL; Pham TV; Nguyen NT; Paci MB; Lin MC; Lee YP
    J Phys Chem A; 2019 Jul; 123(29):6130-6143. PubMed ID: 31267746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction dynamics of O(¹D) + HCOOD/DCOOH investigated with time-resolved Fourier-transform infrared emission spectroscopy.
    Huang SC; Nghia NT; Putikam R; Nguyen HM; Lin MC; Tsuchiya S; Lee YP
    J Chem Phys; 2014 Oct; 141(15):154313. PubMed ID: 25338902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodissociation dynamics of benzaldehyde (C6H5CHO) at 266, 248, and 193 nm.
    Bagchi A; Huang YH; Xu ZF; Raghunath P; Lee YT; Ni CK; Lin MC; Lee YP
    Chem Asian J; 2011 Nov; 6(11):2961-76. PubMed ID: 21954129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two HCl-Elimination Channels and Two CO-Formation Channels Detected with Time-Resolved Infrared Emission upon Photolysis of Acryloyl Chloride [CH2CHC(O)Cl] at 193 nm.
    Lee PW; Scrape PG; Butler LJ; Lee YP
    J Phys Chem A; 2015 Jul; 119(28):7293-304. PubMed ID: 25658197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared Characterization of the Products and Rate Coefficient of the Reaction between Criegee Intermediate CH
    Chung CA; Hsu CW; Lee YP
    J Phys Chem A; 2022 Sep; 126(34):5738-5750. PubMed ID: 35994612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared characterization of the products and the rate coefficient of the reaction between Criegee intermediate CH
    Liang WC; Luo PL; Lee YP
    Phys Chem Chem Phys; 2021 May; 23(18):11082-11090. PubMed ID: 33949520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of internal states of CO from O (1D) + CO determined with time-resolved fourier transform spectroscopy.
    Chen HF; Lee YP
    J Phys Chem A; 2006 Nov; 110(44):12096-102. PubMed ID: 17078603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolysis of oxalyl chloride (ClCO)2 at 193 nm: emission of CO(vWu CY; Lee YP; Wang NS
    J Chem Phys; 2004 Apr; 120(15):6957-63. PubMed ID: 15267594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved, broadband UV-absorption spectrometry measurements of Criegee intermediate kinetics using a new photolytic precursor: unimolecular decomposition of CH
    Peltola J; Seal P; Inkilä A; Eskola A
    Phys Chem Chem Phys; 2020 Jun; 22(21):11797-11808. PubMed ID: 32347242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational distributions of the CO(v) products of the C2H2 + O(3P) and HCCO + O(3P) reactions studied by FTIR emission.
    Chikan V; Leone SR
    J Phys Chem A; 2005 Mar; 109(11):2525-33. PubMed ID: 16833554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of the reactions of O(1D) with CD3OH and CH3OD studied with time-resolved Fourier-transform IR spectroscopy.
    Huang CK; Xu ZF; Nakajima M; Nguyen HM; Lin MC; Tsuchiya S; Lee YP
    J Chem Phys; 2012 Oct; 137(16):164307. PubMed ID: 23126710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed mechanism and kinetics of the reaction of Criegee intermediate CH
    Chung CA; Su JW; Lee YP
    Phys Chem Chem Phys; 2019 Oct; 21(38):21445-21455. PubMed ID: 31532414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and kinetics of the reaction of the Criegee intermediate CH
    Behera B; Takahashi K; Lee YP
    Phys Chem Chem Phys; 2022 Aug; 24(31):18568-18581. PubMed ID: 35917139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO.
    Su YT; Huang YH; Witek HA; Lee YP
    Science; 2013 Apr; 340(6129):174-6. PubMed ID: 23580523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unimolecular decomposition kinetics of the stabilised Criegee intermediates CH
    Stone D; Au K; Sime S; Medeiros DJ; Blitz M; Seakins PW; Decker Z; Sheps L
    Phys Chem Chem Phys; 2018 Oct; 20(38):24940-24954. PubMed ID: 30238099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodissociation dynamics of phenol.
    Tseng CM; Lee YT; Lin MF; Ni CK; Liu SY; Lee YP; Xu ZF; Lin MC
    J Phys Chem A; 2007 Sep; 111(38):9463-70. PubMed ID: 17691716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction dynamics of Cl+CH3SH: rotational and vibrational distributions of HCl probed with time-resolved Fourier-transform spectroscopy.
    Cheng SS; Wu YJ; Lee YP
    J Chem Phys; 2004 Jan; 120(4):1792-800. PubMed ID: 15268308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.