These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3280945)

  • 1. A mutant in a major heat shock protein of Escherichia coli continues to show inducible thermotolerance.
    Ramsay N
    Mol Gen Genet; 1988 Feb; 211(2):332-4. PubMed ID: 3280945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement of the Escherichia coli dnaK gene for thermotolerance and protection against H2O2.
    Delaney JM
    J Gen Microbiol; 1990 Oct; 136(10):2113-8. PubMed ID: 2269877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli DnaK and GrpE heat shock proteins interact both in vivo and in vitro.
    Johnson C; Chandrasekhar GN; Georgopoulos C
    J Bacteriol; 1989 Mar; 171(3):1590-6. PubMed ID: 2522091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli.
    Meury J; Kohiyama M
    J Bacteriol; 1991 Jul; 173(14):4404-10. PubMed ID: 2066337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol.
    Tomoyasu T; Mogk A; Langen H; Goloubinoff P; Bukau B
    Mol Microbiol; 2001 Apr; 40(2):397-413. PubMed ID: 11309122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner.
    Skowyra D; Georgopoulos C; Zylicz M
    Cell; 1990 Sep; 62(5):939-44. PubMed ID: 2203539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent effects of a dnaK mutation on abnormal protein degradation in Escherichia coli.
    Keller JA; Simon LD
    Mol Microbiol; 1988 Jan; 2(1):31-41. PubMed ID: 3130542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress.
    Kusukawa N; Yura T
    Genes Dev; 1988 Jul; 2(7):874-82. PubMed ID: 2905317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100.
    Kedzierska S; Matuszewska E
    FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dnaK protein modulates the heat-shock response of Escherichia coli.
    Tilly K; McKittrick N; Zylicz M; Georgopoulos C
    Cell; 1983 Sep; 34(2):641-6. PubMed ID: 6311435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi.
    Klein G; Zmijewski M; Krzewska J; Czeczatka M; Lipińska B
    Mol Gen Genet; 1998 Aug; 259(2):179-89. PubMed ID: 9747709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation.
    Gur E; Biran D; Shechter N; Genevaux P; Georgopoulos C; Ron EZ
    J Bacteriol; 2004 Nov; 186(21):7236-42. PubMed ID: 15489435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB.
    Mogk A; Tomoyasu T; Goloubinoff P; Rüdiger S; Röder D; Langen H; Bukau B
    EMBO J; 1999 Dec; 18(24):6934-49. PubMed ID: 10601016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA sequence analysis of the dnaK gene of Escherichia coli B and of two dnaK genes carrying the temperature-sensitive mutations dnaK7(Ts) and dnaK756(Ts).
    Miyazaki T; Tanaka S; Fujita H; Itikawa H
    J Bacteriol; 1992 Jun; 174(11):3715-22. PubMed ID: 1592823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli dnaK null mutants are inviable at high temperature.
    Paek KH; Walker GC
    J Bacteriol; 1987 Jan; 169(1):283-90. PubMed ID: 3025174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli.
    Grossman AD; Straus DB; Walter WA; Gross CA
    Genes Dev; 1987 Apr; 1(2):179-84. PubMed ID: 3315848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cya deletion mutant of Escherichia coli develops thermotolerance but does not exhibit a heat-shock response.
    Delaney JM
    Genet Res; 1990 Feb; 55(1):1-6. PubMed ID: 2180785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DnaK/DnaJ chaperone system reactivates endogenous E. coli thermostable FBP aldolase in vivo and in vitro; the effect is enhanced by GroE heat shock proteins.
    Kedzierska S; Jezierski G; Taylor A
    Cell Stress Chaperones; 2001 Jan; 6(1):29-37. PubMed ID: 11525240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical properties of the Escherichia coli dnaK heat shock protein and its mutant derivatives.
    Cegielska A; Georgopoulos C
    Biochimie; 1989; 71(9-10):1071-7. PubMed ID: 2512998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.