These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Evaluation of an artificial intelligence-based decision support for the detection of cutaneous melanoma in primary care: a prospective real-life clinical trial. Papachristou P; Söderholm M; Pallon J; Taloyan M; Polesie S; Paoli J; Anderson CD; Falk M Br J Dermatol; 2024 Jun; 191(1):125-133. PubMed ID: 38234043 [TBL] [Abstract][Full Text] [Related]
6. Dermoscopic diagnostic performance of Japanese dermatologists for skin tumors differs by patient origin: A deep learning convolutional neural network closes the gap. Minagawa A; Koga H; Sano T; Matsunaga K; Teshima Y; Hamada A; Houjou Y; Okuyama R J Dermatol; 2021 Feb; 48(2):232-236. PubMed ID: 33063398 [TBL] [Abstract][Full Text] [Related]
7. Artificial Intelligence vs Medical Providers in the Dermoscopic Diagnosis of Melanoma. Anderson JM; Tejani I; Jarmain T; Kellett L; Moy RL Cutis; 2023 May; 111(5):254-258. PubMed ID: 37406330 [TBL] [Abstract][Full Text] [Related]
8. Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check. Brancaccio G; Balato A; Malvehy J; Puig S; Argenziano G; Kittler H J Invest Dermatol; 2024 Mar; 144(3):492-499. PubMed ID: 37978982 [TBL] [Abstract][Full Text] [Related]
10. Teledermatology for diagnosing skin cancer in adults. Chuchu N; Dinnes J; Takwoingi Y; Matin RN; Bayliss SE; Davenport C; Moreau JF; Bassett O; Godfrey K; O'Sullivan C; Walter FM; Motley R; Deeks JJ; Williams HC; Cochrane Database Syst Rev; 2018 Dec; 12(12):CD013193. PubMed ID: 30521686 [TBL] [Abstract][Full Text] [Related]
11. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population. Wang SQ; Zhang XY; Liu J; Tao C; Zhu CY; Shu C; Xu T; Jin HZ Chin Med J (Engl); 2020 Sep; 133(17):2027-2036. PubMed ID: 32826613 [TBL] [Abstract][Full Text] [Related]
12. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC; J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863 [TBL] [Abstract][Full Text] [Related]
13. Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer. Zakhem GA; Fakhoury JW; Motosko CC; Ho RS J Am Acad Dermatol; 2021 Dec; 85(6):1544-1556. PubMed ID: 31972254 [TBL] [Abstract][Full Text] [Related]
14. Dermoscopy Improves the Diagnostic Accuracy of Melanomas Clinically Resembling Seborrheic Keratosis: Cross-Sectional Study of the Ability to Detect Seborrheic Keratosis-Like Melanomas by a Group of Dermatologists with Varying Degrees of Experience. Carrera C; Segura S; Aguilera P; Takigami CM; Gomes A; Barreiro A; Scalvenzi M; Longo C; Cavicchini S; Thomas L; Malvehy J; Puig S; Zalaudek I Dermatology; 2017; 233(6):471-479. PubMed ID: 29502116 [TBL] [Abstract][Full Text] [Related]