These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32810188)

  • 41. Control of the selectivity of the aquaporin water channel family by global orientational tuning.
    Tajkhorshid E; Nollert P; Jensen MØ; Miercke LJ; O'Connell J; Stroud RM; Schulten K
    Science; 2002 Apr; 296(5567):525-30. PubMed ID: 11964478
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of Pore-Lining Residues in Defining the Rate of Water Conduction by Aquaporin-0.
    Saboe PO; Rapisarda C; Kaptan S; Hsiao YS; Summers SR; De Zorzi R; Dukovski D; Yu J; de Groot BL; Kumar M; Walz T
    Biophys J; 2017 Mar; 112(5):953-965. PubMed ID: 28297654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water permeability and characterization of aquaporin-11.
    Yakata K; Tani K; Fujiyoshi Y
    J Struct Biol; 2011 May; 174(2):315-20. PubMed ID: 21251984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study.
    Miloshevsky GV; Jordan PC
    Biophys J; 2004 Dec; 87(6):3690-702. PubMed ID: 15377535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular dynamics simulation of hydrated phospholipid bilayers.
    Kothekar V
    Indian J Biochem Biophys; 1996 Dec; 33(6):431-47. PubMed ID: 9219427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycerol facilitator GlpF and the associated aquaporin family of channels.
    Stroud RM; Miercke LJ; O'Connell J; Khademi S; Lee JK; Remis J; Harries W; Robles Y; Akhavan D
    Curr Opin Struct Biol; 2003 Aug; 13(4):424-31. PubMed ID: 12948772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The lipid environment of Escherichia coli Aquaporin Z.
    Schmidt V; Sidore M; Bechara C; Duneau JP; Sturgis JN
    Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):431-440. PubMed ID: 30414848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molar concentrations of sorbitol and polyethylene glycol inhibit the Plasmodium aquaglyceroporin but not that of E. coli: involvement of the channel vestibules.
    Song J; Almasalmeh A; Krenc D; Beitz E
    Biochim Biophys Acta; 2012 May; 1818(5):1218-24. PubMed ID: 22326891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water transport in aquaporins: molecular dynamics simulations.
    Ikeguchi M
    Front Biosci (Landmark Ed); 2009 Jan; 14(4):1283-91. PubMed ID: 19273130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations.
    Hashido M; Kidera A; Ikeguchi M
    Biophys J; 2007 Jul; 93(2):373-85. PubMed ID: 17449664
    [TBL] [Abstract][Full Text] [Related]  

  • 51. To gate or not to gate: using molecular dynamics simulations to morph gated plant aquaporins into constitutively open conformations.
    Khandelia H; Jensen MØ; Mouritsen OG
    J Phys Chem B; 2009 Apr; 113(15):5239-44. PubMed ID: 19320451
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation.
    Kong X; Qin S; Lu D; Liu Z
    Phys Chem Chem Phys; 2014 May; 16(18):8434-40. PubMed ID: 24668218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: comparison with radish.
    Ohshima Y; Iwasaki I; Suga S; Murakami M; Inoue K; Maeshima M
    Plant Cell Physiol; 2001 Oct; 42(10):1119-29. PubMed ID: 11673628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Architecture and selectivity in aquaporins: 2.5 a X-ray structure of aquaporin Z.
    Savage DF; Egea PF; Robles-Colmenares Y; O'Connell JD; Stroud RM
    PLoS Biol; 2003 Dec; 1(3):E72. PubMed ID: 14691544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels.
    Porter CJ; Werber JR; Zhong M; Wilson CJ; Elimelech M
    ACS Nano; 2020 Sep; 14(9):10894-10916. PubMed ID: 32886487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of tethered-lipid bilayers on gold surfaces for the incorporation of integral membrane proteins synthesized by cell-free expression.
    Coutable A; Thibault C; Chalmeau J; François JM; Vieu C; Noireaux V; Trévisiol E
    Langmuir; 2014 Mar; 30(11):3132-41. PubMed ID: 24568716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure-function relationships in aquaporins.
    Laski ME
    Semin Nephrol; 2006 May; 26(3):189-99. PubMed ID: 16713492
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity.
    López-Pérez L; Martínez-Ballesta Mdel C; Maurel C; Carvajal M
    Phytochemistry; 2009 Mar; 70(4):492-500. PubMed ID: 19264331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differences in aquaporin levels among cell types of radish and measurement of osmotic water permeability of individual protoplasts.
    Suga S; Murai M; Kuwagata T; Maeshima M
    Plant Cell Physiol; 2003 Mar; 44(3):277-86. PubMed ID: 12668774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins.
    Stansfeld PJ; Jefferys EE; Sansom MS
    Structure; 2013 May; 21(5):810-9. PubMed ID: 23602661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.