BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32810531)

  • 21. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion.
    Shojaei AH; Paulson J; Honary S
    J Control Release; 2000 Jul; 67(2-3):223-32. PubMed ID: 10825556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation, characterizations and properties of sodium alginate grafted acrylonitrile/polyethylene glycol electrospun nanofibers.
    Sun F; Guo J; Liu Y; Yu Y
    Int J Biol Macromol; 2019 Sep; 137():420-425. PubMed ID: 31252015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MW-assisted synthesis of carboxymethyl tamarind kernel polysaccharide-g-polyacrylonitrile: optimization and characterization.
    Meenkashi ; Ahuja M; Verma P
    Carbohydr Polym; 2014 Nov; 113():532-8. PubMed ID: 25256516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of accelerated aging of lignin-containing polymer materials.
    Goliszek M; Podkościelna B; Sevastyanova O; Fila K; Chabros A; Pączkowski P
    Int J Biol Macromol; 2019 Feb; 123():910-922. PubMed ID: 30448496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer.
    Shankar P; Gomathi T; Vijayalakshmi K; Sudha PN
    Int J Biol Macromol; 2014 Jun; 67():180-8. PubMed ID: 24680901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis.
    Tejado A; Peña C; Labidi J; Echeverria JM; Mondragon I
    Bioresour Technol; 2007 May; 98(8):1655-63. PubMed ID: 16843657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lignin phenolation by graft copolymerization to boost its reactivity.
    Singh M; Lee SC; Won K
    Int J Biol Macromol; 2024 May; 266(Pt 2):131258. PubMed ID: 38556229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aggregated Solution Morphology of Poly(acrylic acid)-Poly(styrene) Block Copolymers Improves Drug Supersaturation Maintenance and Caco-2 Cell Membrane Permeation.
    Purchel AA; Boyle WS; Reineke TM
    Mol Pharm; 2019 Nov; 16(11):4423-4435. PubMed ID: 31633362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of Yb-based catalyst for AGET ATRP of acrylonitrile to simultaneously control molecular mass distribution and tacticity.
    Ma J; Chen H; Zhang M; Wang C; Zhang Y; Qu R
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1699-703. PubMed ID: 24364980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and Characterization of Biobased Lignin-Co-Polyester/Amide Thermoplastics.
    Young EL; McDonald AG
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33922098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acrylonitrile-sodium methallylsulfonate copolymer. DSC approach to membrane porosity of foam and hollow fibers.
    Cohen-Addad JP; Prunelet A; Bazile JP; Buda A; Thomas M
    Biomaterials; 2003 Jan; 24(1):173-9. PubMed ID: 12417191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization.
    Thakur VK; Thakur MK; Gupta RK
    Int J Biol Macromol; 2013 Oct; 61():121-6. PubMed ID: 23831536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New hydrolysis-dependent thermosensitive polymer for an injectable degradable system.
    Cui Z; Lee BH; Vernon BL
    Biomacromolecules; 2007 Apr; 8(4):1280-6. PubMed ID: 17371066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications.
    Oroojalian F; Jahanafrooz Z; Chogan F; Rezayan AH; Malekzade E; Rezaei SJT; Nabid MR; Sahebkar A
    J Cell Biochem; 2019 Oct; 120(10):17194-17207. PubMed ID: 31104319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polymer-grafted lignin surfactants prepared via reversible addition-fragmentation chain-transfer polymerization.
    Gupta C; Washburn NR
    Langmuir; 2014 Aug; 30(31):9303-12. PubMed ID: 25046477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile).
    Sabaa MW; Elzanaty AM; Abdel-Gawad OF; Arafa EG
    Int J Biol Macromol; 2018 Apr; 109():1280-1291. PubMed ID: 29169941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave initiated synthesis of polyacrylamide grafted casein (CAS-g-PAM)--its application as a flocculant.
    Sinha S; Mishra S; Sen G
    Int J Biol Macromol; 2013 Sep; 60():141-7. PubMed ID: 23711664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Red-Shifted Luminescence of Acrylonitrile-Containing Copolymers: A Matter of One Methyl Unit.
    Li X; Dai J; Zhang R; Wen T
    Macromol Rapid Commun; 2024 Apr; 45(7):e2300666. PubMed ID: 38134449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels.
    Mittal H; Jindal R; Kaith BS; Maity A; Ray SS
    Carbohydr Polym; 2014 Dec; 114():321-329. PubMed ID: 25263897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.