These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32810591)

  • 1. High titer methyl ketone production with tailored Pseudomonas taiwanensis VLB120.
    Nies SC; Alter TB; Nölting S; Thiery S; Phan ANT; Drummen N; Keasling JD; Blank LM; Ebert BE
    Metab Eng; 2020 Nov; 62():84-94. PubMed ID: 32810591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of methyl ketones by metabolically engineered Escherichia coli.
    Park J; Rodríguez-Moyá M; Li M; Pichersky E; San KY; Gonzalez R
    J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1703-12. PubMed ID: 22850984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance and metabolic response of
    Wordofa GG; Kristensen M
    Biotechnol Biofuels; 2018; 11():199. PubMed ID: 30034525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual β-oxidation pathway and transcription factor engineering for methyl ketones production in Saccharomyces cerevisiae.
    Zhang G; Zhang C; Wang Z; Wang Q; Nielsen J; Dai Z
    Metab Eng; 2022 Sep; 73():225-234. PubMed ID: 35987431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production.
    Wynands B; Lenzen C; Otto M; Koch F; Blank LM; Wierckx N
    Metab Eng; 2018 May; 47():121-133. PubMed ID: 29548982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies.
    Goh EB; Baidoo EEK; Burd H; Lee TS; Keasling JD; Beller HR
    Metab Eng; 2014 Nov; 26():67-76. PubMed ID: 25241399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered
    Lenzen C; Wynands B; Otto M; Bolzenius J; Mennicken P; Blank LM; Wierckx N
    Front Bioeng Biotechnol; 2019; 7():130. PubMed ID: 31245364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.
    Wang X; Goh EB; Beller HR
    Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving methyl ketone production in Escherichia coli by heterologous expression of NADH-dependent FabG.
    Goh EB; Chen Y; Petzold CJ; Keasling JD; Beller HR
    Biotechnol Bioeng; 2018 May; 115(5):1161-1172. PubMed ID: 29411856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamlined
    Wynands B; Otto M; Runge N; Preckel S; Polen T; Blank LM; Wierckx N
    ACS Synth Biol; 2019 Sep; 8(9):2036-2050. PubMed ID: 31465206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of double bond positions in methyl ketones by gas chromatography-mass spectrometry using dimethyl disulfide derivatives.
    Froning M; Grütering C; Blank LM; Hayen H
    Rapid Commun Mass Spectrom; 2023 Mar; 37(6):e9457. PubMed ID: 36512472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production.
    Hanko EKR; Denby CM; Sànchez I Nogué V; Lin W; Ramirez KJ; Singer CA; Beckham GT; Keasling JD
    Metab Eng; 2018 Jul; 48():52-62. PubMed ID: 29852272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentative production of enantiopure (S)-linalool using a metabolically engineered Pantoea ananatis.
    Nitta N; Tajima Y; Yamamoto Y; Moriya M; Matsudaira A; Hoshino Y; Nishio Y; Usuda Y
    Microb Cell Fact; 2021 Mar; 20(1):54. PubMed ID: 33653319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of bacterial methyl ketone synthesis for biofuels.
    Goh EB; Baidoo EE; Keasling JD; Beller HR
    Appl Environ Microbiol; 2012 Jan; 78(1):70-80. PubMed ID: 22038610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems Analysis of NADH Dehydrogenase Mutants Reveals Flexibility and Limits of Pseudomonas taiwanensis VLB120's Metabolism.
    Nies SC; Dinger R; Chen Y; Wordofa GG; Kristensen M; Schneider K; Büchs J; Petzold CJ; Keasling JD; Blank LM; Ebert BE
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutively solvent-tolerant Pseudomonas taiwanensis VLB120∆ C∆ ttgV supports particularly high-styrene epoxidation activities when grown under glucose excess conditions.
    Volmer J; Lindmeyer M; Seipp J; Schmid A; Bühler B
    Biotechnol Bioeng; 2019 May; 116(5):1089-1101. PubMed ID: 30636283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity.
    Volmer J; Neumann C; Bühler B; Schmid A
    Appl Environ Microbiol; 2014 Oct; 80(20):6539-48. PubMed ID: 25128338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120.
    Köhler KA; Blank LM; Frick O; Schmid A
    Environ Microbiol; 2015 Jan; 17(1):156-70. PubMed ID: 24934825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid.
    Li J; Ye BC
    Bioresour Technol; 2021 Jan; 319():124239. PubMed ID: 33254462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.