BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32810781)

  • 1. Fluorescence and quantum mechanical approach on the interaction of amides and their role on the stability and coexistence of the rotamer conformations of L-tryptophan in aqueous solution.
    Kumaran R; Gayathri S; Augustine Arul Prasad T; Dhenadhayalan N; Keerthiga R; Sureka S; Jeevitha K; Karthick P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 243():118791. PubMed ID: 32810781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysical and Electrochemical Studies of 4-Dicyanomethylene 2,6-Dimethyl-4H-Pyran (DDP) Dye with Amides in Water.
    Gayathri S; Vasanthi R; Vanjinathan M; Kumaran R
    J Fluoresc; 2018 Nov; 28(6):1379-1391. PubMed ID: 30276611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. Experimental and computational studies.
    Muiño PL; Callis PR
    J Phys Chem B; 2009 Mar; 113(9):2572-7. PubMed ID: 18672928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model.
    Liu B; Thalji RK; Adams PD; Fronczek FR; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Nov; 124(44):13329-38. PubMed ID: 12405862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan side chain conformers monitored by NMR and time-resolved fluorescence spectroscopies.
    Julien O; Wang G; Jonckheer A; Engelborghs Y; Sykes BD
    Proteins; 2012 Jan; 80(1):239-45. PubMed ID: 22072563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence of tryptophan dipeptides: correlations with the rotamer model.
    Chen RF; Knutson JR; Ziffer H; Porter D
    Biochemistry; 1991 May; 30(21):5184-95. PubMed ID: 2036384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides.
    Adams PD; Chen Y; Ma K; Zagorski MG; Sönnichsen FD; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Aug; 124(31):9278-86. PubMed ID: 12149035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-gated intensified charge-coupled device camera to record time-resolved fluorescence spectra of tryptophan.
    Stortelder A; Buijs JB; Bulthuis J; Gooijer C; van der Zwan G
    Appl Spectrosc; 2004 Jun; 58(6):705-10. PubMed ID: 15198823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating FRET from tryptophan: is the rotamer model correct?
    Beierlein FR; Othersen OG; Lanig H; Schneider S; Clark T
    J Am Chem Soc; 2006 Apr; 128(15):5142-52. PubMed ID: 16608350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of short- and long-range interactions on trp rotamer populations determined by site-directed tryptophan fluorescence of tear lipocalin.
    Gasymov OK; Abduragimov AR; Glasgow BJ
    PLoS One; 2013; 8(10):e78754. PubMed ID: 24205305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of alkyl group on amide nitrogen atom on fluorescence quenching of tyrosine amide and N-acetyltyrosine amide.
    Mrozek J; Rzeska A; Guzow K; Karolczak J; Wiczk W
    Biophys Chem; 2004 Oct; 111(2):105-13. PubMed ID: 15381308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of tryptophan fluorescence intensity decay parameters with 1H NMR-determined rotamer conformations: [tryptophan2]oxytocin.
    Ross JB; Wyssbrod HR; Porter RA; Schwartz GP; Michaels CA; Laws WR
    Biochemistry; 1992 Feb; 31(6):1585-94. PubMed ID: 1737015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational effects on tryptophan fluorescence in cyclic hexapeptides.
    Pan CP; Barkley MD
    Biophys J; 2004 Jun; 86(6):3828-35. PubMed ID: 15189879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of fluorescence decays using a power-like model.
    Włodarczyk J; Kierdaszuk B
    Biophys J; 2003 Jul; 85(1):589-98. PubMed ID: 12829513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay.
    Xu J; Knutson JR
    J Phys Chem B; 2009 Sep; 113(35):12084-9. PubMed ID: 19708715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MD + QM correlations with tryptophan fluorescence spectral shifts and lifetimes.
    Callis PR; Tusell JR
    Methods Mol Biol; 2014; 1076():171-214. PubMed ID: 24108627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photophysical studies on the interaction of formamide and alkyl substituted amides with photoinduced electron transfer (PET) based acridinedione dyes in water.
    Kumaran R; Ramamurthy P
    J Fluoresc; 2011 Nov; 21(6):2165-72. PubMed ID: 21769603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive hydrogen bonding influences of fluorophore- urea-adenine system in water: Photophysical and photochemical approaches.
    Anupurath S; Krishnan A; Namasivayam D; Rajaraman V; Rajendran K
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118409. PubMed ID: 32361320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysics of indole, tryptophan and N-acetyl-L-tryptophanamide (NATA): heavy atom effect.
    Kowalska-Baron A; Chan M; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():282-9. PubMed ID: 22964241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature study of indole, tryptophan and N-acetyl-L-tryptophanamide (NATA) triplet-state quenching by iodide in aqueous solution.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():42-8. PubMed ID: 23602958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.