BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32810842)

  • 1. An Open Data Set of Inertial, Magnetic, Foot-Ground Contact, and Electromyographic Signals From Wearable Sensors During Walking.
    Camara Miraldo D; Naville Watanabe R; Duarte M
    Motor Control; 2020 Aug; 24(4):558-570. PubMed ID: 32810842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base of Support, Step Length and Stride Width Estimation during Walking Using an Inertial and Infrared Wearable System.
    Rossanigo R; Caruso M; Bertuletti S; Deriu F; Knaflitz M; Della Croce U; Cereatti A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults.
    Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485
    [No Abstract]   [Full Text] [Related]  

  • 4. Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors.
    Hao M; Chen K; Fu C
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3534-3542. PubMed ID: 30932822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait and Dynamic Balance Sensing Using Wearable Foot Sensors.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):218-227. PubMed ID: 30582548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wearable solution for accurate step detection based on the direct measurement of the inter-foot distance.
    Bertuletti S; Della Croce U; Cereatti A
    J Biomech; 2019 Feb; 84():274-277. PubMed ID: 30630626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foot orientation and trajectory variability in locomotion: Effects of real-world terrain.
    Gibson E; Douglas G; Jeffries K; Delaurier J; Chestnut T; Charlton JM
    PLoS One; 2024; 19(5):e0293691. PubMed ID: 38753603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning-Based Energy Expenditure Estimation in Assisted and Non-Assisted Gait Using Inertial, EMG, and Heart Rate Wearable Sensors.
    Lopes JM; Figueiredo J; Fonseca P; Cerqueira JJ; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset.
    Karatsidis A; Richards RE; Konrath JM; van den Noort JC; Schepers HM; Bellusci G; Harlaar J; Veltink PH
    J Neuroeng Rehabil; 2018 Aug; 15(1):78. PubMed ID: 30111337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors.
    Goršič M; Dai B; Novak D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Novel Wearable System for Foot Clearance Estimation.
    Jacob S; Fernie G; Roshan Fekr A
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait Event Detection in Controlled and Real-Life Situations: Repeated Measures From Healthy Subjects.
    Figueiredo J; Felix P; Costa L; Moreno JC; Santos CP
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1945-1956. PubMed ID: 30334739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Tripping Risks in Fast Walking through Cadence-Controlled Gait Analysis.
    Wang WF; Lien WC; Liu CY; Yang CY
    J Healthc Eng; 2018; 2018():2723178. PubMed ID: 30002803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating physiological signal salience for estimating metabolic energy cost from wearable sensors.
    Ingraham KA; Ferris DP; Remy CD
    J Appl Physiol (1985); 2019 Mar; 126(3):717-729. PubMed ID: 30629472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plantar pressure sensors indicate women to have a significantly higher peak pressure on the hallux, toes, forefoot, and medial of the foot compared to men.
    Yamamoto T; Hoshino Y; Kanzaki N; Nukuto K; Yamashita T; Ibaraki K; Nagamune K; Nagai K; Araki D; Matsushita T; Kuroda R
    J Foot Ankle Res; 2020 Jul; 13(1):40. PubMed ID: 32611444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground Contact Time Estimating Wearable Sensor to Measure Spatio-Temporal Aspects of Gait.
    Bernhart S; Kranzinger S; Berger A; Peternell G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.