BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 32810856)

  • 1. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism.
    Chaliha D; Albrecht M; Vaccarezza M; Takechi R; Lam V; Al-Salami H; Mamo J
    Dev Neurosci; 2020; 42(1):12-48. PubMed ID: 32810856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of valproic acid neurotoxicity on aggressive behavior in zebrafish autism model.
    Li X; Feng T; Lu W
    Comp Biochem Physiol C Toxicol Pharmacol; 2024 Jan; 275():109783. PubMed ID: 37926328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of predictive validity of two autism spectrum disorder rat models: Behavioural investigations.
    Morel C; Paoli J; Camonin C; Marchal N; Grova N; Schroeder H
    Neurotoxicology; 2024 May; 103():39-49. PubMed ID: 38761921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics.
    Kazdoba TM; Leach PT; Yang M; Silverman JL; Solomon M; Crawley JN
    Curr Top Behav Neurosci; 2016; 28():1-52. PubMed ID: 27305922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preventive effects of resveratrol against early-life impairments in the animal model of autism induced by valproic acid.
    Schwingel GB; Fontes-Dutra M; Ramos B; Riesgo R; Bambini-Junior V; Gottfried C
    IBRO Neurosci Rep; 2023 Dec; 15():242-251. PubMed ID: 37841088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism.
    Chomiak T; Karnik V; Block E; Hu B
    BMC Neurosci; 2010 Aug; 11():102. PubMed ID: 20723245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autistic-like behaviour and changes in thalamic cell numbers a rat model of valproic acid-induced autism; A behavioural and stereological study.
    Horata E; Ay H; Aslan D
    Brain Res; 2024 May; ():149047. PubMed ID: 38823508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gestational Fisetin Exerts Neuroprotection by Regulating Mitochondria-Directed Canonical Wnt Signaling, BBB Integrity, and Apoptosis in Prenatal VPA-Induced Rodent Model of Autism.
    Mehra S; Ahsan AU; Sharma M; Budhwar M; Chopra M
    Mol Neurobiol; 2023 Dec; ():. PubMed ID: 38048031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affective and Cognitive Impairments in Rodent Models of Diabetes.
    Palazzo E; Marabese I; Boccella S; Belardo C; Pierretti G; Maione S
    Curr Neuropharmacol; 2024; 22(8):1327-1343. PubMed ID: 38279738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetitive Behavior in Neurodevelopmental Disorders: Clinical and Translational Findings.
    Whitehouse CM; Lewis MH
    Behav Anal; 2015 Oct; 38(2):163-178. PubMed ID: 26543319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A short review on behavioural assessment methods in rodents.
    K S V ABG; Dissanayake D; Gunatilake M; Kuzhandai Velu V; Paranthaman M
    Bioinformation; 2023; 19(8):866-870. PubMed ID: 37908611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in the autonomic nerve activities of prenatal autism model mice treated with valproic acid at different developmental stages.
    Kasahara Y; Yoshida C; Nakanishi K; Fukase M; Suzuki A; Kimura Y
    Sci Rep; 2020 Oct; 10(1):17722. PubMed ID: 33082409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prenatal valproate exposure and adverse neurodevelopmental outcomes: Does sex matter?
    Honybun E; Thwaites R; Malpas CB; Rayner G; Anderson A; Graham J; Hitchcock A; O'Brien TJ; Vajda FJE; Perucca P
    Epilepsia; 2021 Mar; 62(3):709-719. PubMed ID: 33547648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous Electrical Acupoint Stimulation in Early Life Changes Synaptic Plasticity and Improves Symptoms in a Valproic Acid-Induced Rat Model of Autism.
    Wang X; Ding R; Song Y; Wang J; Zhang C; Han S; Han J; Zhang R
    Neural Plast; 2020; 2020():8832694. PubMed ID: 33456456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of disease-associated microRNAs - application for autism spectrum disorders.
    Konečná B; Radošinská J; Keményová P; Repiská G
    Rev Neurosci; 2020 Oct; 31(7):757-769. PubMed ID: 32813679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of prenatal versus postnatal valproic acid rat models of autism: A behavioral and neurobiological study.
    Elnahas EM; Abuelezz SA; Mohamad MI; Nabil MM; Abdelraouf SM; Bahaa N; Hassan GA; Ibrahim EA; Ahmed AI; Aboul-Fotouh S
    Prog Neuropsychopharmacol Biol Psychiatry; 2021 Jun; 108():110185. PubMed ID: 33238165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary Results Regarding Sleep in a Zebrafish Model of Autism Spectrum Disorder.
    Robea MA; Ciobica A; Curpan AS; Plavan G; Strungaru S; Lefter R; Nicoara M
    Brain Sci; 2021 Apr; 11(5):. PubMed ID: 33924776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Need for Consistency in Behavioral Phenotyping for ASD: Analysis of the Valproic Acid Model.
    Larner O; Roberts J; Twiss J; Freeman L
    Autism Res Treat; 2021; 2021():8863256. PubMed ID: 33828864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity.
    Masini E; Loi E; Vega-Benedetti AF; Carta M; Doneddu G; Fadda R; Zavattari P
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment.
    Taleb A; Lin W; Xu X; Zhang G; Zhou QG; Naveed M; Meng F; Fukunaga K; Han F
    Biomed Pharmacother; 2021 May; 137():111322. PubMed ID: 33761592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.