BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32811148)

  • 1. Magnetically Driven Nanotransporter-Assisted Intracellular Delivery and Autonomous Release of Proteins.
    Cheng G; Han X; Zheng SY
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41096-41104. PubMed ID: 32811148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of Extracellular Vesicle-like Metal-Organic Framework Nanoparticles for Protection and Intracellular Delivery of Biofunctional Proteins.
    Cheng G; Li W; Ha L; Han X; Hao S; Wan Y; Wang Z; Dong F; Zou X; Mao Y; Zheng SY
    J Am Chem Soc; 2018 Jun; 140(23):7282-7291. PubMed ID: 29809001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-responsive nanocapsules for intracellular protein delivery.
    Zhao M; Biswas A; Hu B; Joo KI; Wang P; Gu Z; Tang Y
    Biomaterials; 2011 Aug; 32(22):5223-30. PubMed ID: 21514660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating UiO-66 Metal-Organic Framework Nanoparticles as Acid-Sensitive Carriers for Pulmonary Drug Delivery Applications.
    Jarai BM; Stillman Z; Attia L; Decker GE; Bloch ED; Fromen CA
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):38989-39004. PubMed ID: 32805901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers.
    Lee YW; Luther DC; Kretzmann JA; Burden A; Jeon T; Zhai S; Rotello VM
    Theranostics; 2019; 9(11):3280-3292. PubMed ID: 31244954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release.
    Omrani I; Babanejad N; Shendi HK; Nabid MR
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):607-616. PubMed ID: 27770933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Primary Mechanism of Cellular Internalization for a Short Cell- Penetrating Peptide as a Nano-Scale Delivery System.
    Liu BR; Huang YW; Korivi M; Lo S-Y; Aronstam RS; Lee H-J
    Curr Pharm Biotechnol; 2017; 18(7):569-584. PubMed ID: 28828981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Coordinative Dendrimer Achieves Excellent Efficiency in Cytosolic Protein and Peptide Delivery.
    Ren L; Lv J; Wang H; Cheng Y
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4711-4719. PubMed ID: 31863674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-Responsive Polymeric Nanocomplex for Delivery of Cytotoxic Protein and Chemotherapeutics.
    Lim WQ; Phua SZF; Zhao Y
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31638-31648. PubMed ID: 31389684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug delivery.
    Spillmann CM; Naciri J; Algar WR; Medintz IL; Delehanty JB
    ACS Nano; 2014 Jul; 8(7):6986-97. PubMed ID: 24979226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency.
    Li J; Zhang W; Gao Y; Tong H; Chen Z; Shi J; Santos HA; Xia B
    J Mater Chem B; 2020 Jan; 8(3):546-557. PubMed ID: 31854435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery.
    Cao Y; Gao M; Chen C; Fan A; Zhang J; Kong D; Wang Z; Peer D; Zhao Y
    Nanotechnology; 2015 Mar; 26(11):115101. PubMed ID: 25708980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stepwise dual pH and redox-responsive cross-linked polypeptide nanoparticles for enhanced cellular uptake and effective cancer therapy.
    Qu J; Wang R; Peng S; Shi M; Yang ST; Luo JB; Lin J; Zhou QH
    J Mater Chem B; 2019 Dec; 7(45):7129-7140. PubMed ID: 31663585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione-responsive homodithiacalix[4]arene-based nanoparticles for selective intracellular drug delivery.
    Cheng Q; Yin H; Sun C; Yue L; Ding Y; Dehaen W; Wang R
    Chem Commun (Camb); 2018 Jul; 54(58):8128-8131. PubMed ID: 29974903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinction Between Active and Passive Targeting of Nanoparticles Dictate Their Overall Therapeutic Efficacy.
    Clemons TD; Singh R; Sorolla A; Chaudhari N; Hubbard A; Iyer KS
    Langmuir; 2018 Dec; 34(50):15343-15349. PubMed ID: 30441895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular machinery.
    Bale SS; Kwon SJ; Shah DA; Banerjee A; Dordick JS; Kane RS
    ACS Nano; 2010 Mar; 4(3):1493-500. PubMed ID: 20201555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of "on-demand" drug release using dual tumor marker mediated DNA-capped versatile mesoporous silica nanoparticles.
    Wang S; Liu F; Li XL
    Chem Commun (Camb); 2017 Aug; 53(62):8755-8758. PubMed ID: 28726871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.