BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 32811163)

  • 1. GFAP at 50.
    Messing A; Brenner M
    ASN Neuro; 2020; 12():1759091420949680. PubMed ID: 32811163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GFAP and its role in Alexander disease.
    Quinlan RA; Brenner M; Goldman JE; Messing A
    Exp Cell Res; 2007 Jun; 313(10):2077-87. PubMed ID: 17498694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Glial fibrillary acidic protein: the component of intermediate filaments in the vertebrate brain astrocytes].
    Sukhorukova EG; Kruzhevskiĭ DÉ; Alekseeva OS
    Zh Evol Biokhim Fiziol; 2015; 51(1):3-10. PubMed ID: 25859599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GFAP: functional implications gleaned from studies of genetically engineered mice.
    Messing A; Brenner M
    Glia; 2003 Jul; 43(1):87-90. PubMed ID: 12761871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focus on molecules: glial fibrillary acidic protein (GFAP).
    Sarthy V
    Exp Eye Res; 2007 Mar; 84(3):381-2. PubMed ID: 16563382
    [No Abstract]   [Full Text] [Related]  

  • 6. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease.
    Moody LR; Barrett-Wilt GA; Sussman MR; Messing A
    J Biol Chem; 2017 Apr; 292(14):5814-5824. PubMed ID: 28223355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.
    Pekny T; Faiz M; Wilhelmsson U; Curtis MA; Matej R; Skalli O; Pekny M
    APMIS; 2014 Jan; 122(1):76-80. PubMed ID: 23594359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Alexander disease-associated mutations on the assembly and organization of GFAP intermediate filaments.
    Yang AW; Lin NH; Yeh TH; Snider N; Perng MD
    Mol Biol Cell; 2022 Jul; 33(8):ar69. PubMed ID: 35511821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GFAP mutations in Alexander disease.
    Li R; Messing A; Goldman JE; Brenner M
    Int J Dev Neurosci; 2002; 20(3-5):259-68. PubMed ID: 12175861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease.
    Tian R; Gregor M; Wiche G; Goldman JE
    Am J Pathol; 2006 Mar; 168(3):888-97. PubMed ID: 16507904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STAT3 Drives GFAP Accumulation and Astrocyte Pathology in a Mouse Model of Alexander Disease.
    Hagemann TL; Coyne S; Levin A; Wang L; Feany MB; Messing A
    Cells; 2023 Mar; 12(7):. PubMed ID: 37048051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response.
    Hagemann TL; Connor JX; Messing A
    J Neurosci; 2006 Oct; 26(43):11162-73. PubMed ID: 17065456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27.
    Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA
    Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocyte intermediate filaments in CNS pathologies and regeneration.
    Pekny M; Pekna M
    J Pathol; 2004 Nov; 204(4):428-37. PubMed ID: 15495269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP.
    Nielsen AL; Jørgensen AL
    Gene; 2003 May; 310():123-32. PubMed ID: 12801639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease.
    Mignot C; Delarasse C; Escaich S; Della Gaspera B; Noé E; Colucci-Guyon E; Babinet C; Pekny M; Vicart P; Boespflug-Tanguy O; Dautigny A; Rodriguez D; Pham-Dinh D
    Exp Cell Res; 2007 Aug; 313(13):2766-79. PubMed ID: 17604020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.
    Sosunov AA; McKhann GM; Goldman JE
    Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability.
    Chen YS; Lim SC; Chen MH; Quinlan RA; Perng MD
    Exp Cell Res; 2011 Oct; 317(16):2252-66. PubMed ID: 21756903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel deletion mutation in GFAP gene in an infantile form of Alexander disease.
    Murakami N; Tsuchiya T; Kanazawa N; Tsujino S; Nagai T
    Pediatr Neurol; 2008 Jan; 38(1):50-2. PubMed ID: 18054694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity.
    Battaglia RA; Beltran AS; Delic S; Dumitru R; Robinson JA; Kabiraj P; Herring LE; Madden VJ; Ravinder N; Willems E; Newman RA; Quinlan RA; Goldman JE; Perng MD; Inagaki M; Snider NT
    Elife; 2019 Nov; 8():. PubMed ID: 31682229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.