These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32811358)

  • 1. The origin of the elements: a century of progress.
    Johnson JA; Fields BD; Thompson TA
    Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2180):20190301. PubMed ID: 32811358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Populating the periodic table: Nucleosynthesis of the elements.
    Johnson JA
    Science; 2019 Feb; 363(6426):474-478. PubMed ID: 30705182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars.
    Dauphas N
    Nature; 2005 Jun; 435(7046):1203-5. PubMed ID: 15988518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging the gap: from massive stars to supernovae.
    Maund JR; Crowther PA; Janka HT; Langer N
    Philos Trans A Math Phys Eng Sci; 2017 Oct; 375(2105):. PubMed ID: 28923995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spallation processes and nuclear interaction products of cosmic rays.
    Silberberg R; Tsao CH
    Phys Rep; 1990 Aug; 191(6):351-408. PubMed ID: 11538046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of the first stars.
    Bromm V
    Rep Prog Phys; 2013 Nov; 76(11):112901. PubMed ID: 24168986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collapsars as a major source of r-process elements.
    Siegel DM; Barnes J; Metzger BD
    Nature; 2019 May; 569(7755):241-244. PubMed ID: 31068724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cosmological density of baryons from observations of 3He+ in the Milky Way.
    Bania TM; Rood RT; Balser DS
    Nature; 2002 Jan; 415(6867):54-7. PubMed ID: 11780112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. r-Process elements from magnetorotational hypernovae.
    Yong D; Kobayashi C; Da Costa GS; Bessell MS; Chiti A; Frebel A; Lind K; Mackey AD; Nordlander T; Asplund M; Casey AR; Marino AF; Murphy SJ; Schmidt BP
    Nature; 2021 Jul; 595(7866):223-226. PubMed ID: 34234332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron capture in stars.
    Langanke K; Martínez-Pinedo G; Zegers RGT
    Rep Prog Phys; 2021 May; 84(6):. PubMed ID: 33765670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. R-process enrichment from a single event in an ancient dwarf galaxy.
    Ji AP; Frebel A; Chiti A; Simon JD
    Nature; 2016 Mar; 531(7596):610-3. PubMed ID: 27001693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probable stellar solution to the cosmological lithium discrepancy.
    Korn AJ; Grundahl F; Richard O; Barklem PS; Mashonkina L; Collet R; Piskunov N; Gustafsson B
    Nature; 2006 Aug; 442(7103):657-9. PubMed ID: 16900193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme
    Schmidt DR; Woolf NJ; Zega TJ; Ziurys LM
    Nature; 2018 Dec; 564(7736):378-381. PubMed ID: 30568193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the p-process radionuclides 92Nb and 146Sm in the early solar system and inferences on the birth of the Sun.
    Lugaro M; Pignatari M; Ott U; Zuber K; Travaglio C; Gyürky G; Fülöp Z
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):907-12. PubMed ID: 26755600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar abundance ratios of the iron-peak elements in the Perseus cluster.
    Hitomi Collaboration
    Nature; 2017 Nov; 551(7681):478-480. PubMed ID: 29132142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Element abundance patterns in stars indicate fission of nuclei heavier than uranium.
    Roederer IU; Vassh N; Holmbeck EM; Mumpower MR; Surman R; Cowan JJ; Beers TC; Ezzeddine R; Frebel A; Hansen TT; Placco VM; Sakari CM
    Science; 2023 Dec; 382(6675):1177-1180. PubMed ID: 38060658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-energy core-collapse supernova without a hydrogen envelope.
    Valenti S; Pastorello A; Cappellaro E; Benetti S; Mazzali PA; Manteca J; Taubenberger S; Elias-Rosa N; Ferrando R; Harutyunyan A; Hentunen VP; Nissinen M; Pian E; Turatto M; Zampieri L; Smartt SJ
    Nature; 2009 Jun; 459(7247):674-7. PubMed ID: 19494909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013).
    Tajitsu A; Sadakane K; Naito H; Arai A; Aoki W
    Nature; 2015 Feb; 518(7539):381-4. PubMed ID: 25693569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IRON: A KEY ELEMENT FOR UNDERSTANDING THE ORIGIN AND EVOLUTION OF INTERSTELLAR DUST.
    Dwek E
    Astrophys J; 2016 Jul; 825(2):. PubMed ID: 32747835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star.
    Umeda H; Nomoto K
    Nature; 2003 Apr; 422(6934):871-3. PubMed ID: 12712199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.