These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32812390)

  • 61. An abnormal rate of actin myosin cross-bridge cycling in colonic smooth muscle associated with experimental colitis.
    Xie YN; Gerthoffer WT; Reddy SN; Cominelli F; Eysselein VE; Snape WJ
    Am J Physiol; 1992 May; 262(5 Pt 1):G921-6. PubMed ID: 1590400
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Impact of beta-myosin heavy chain isoform expression on cross-bridge cycling kinetics.
    Rundell VL; Manaves V; Martin AF; de Tombe PP
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H896-903. PubMed ID: 15471982
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural limits on force production and shortening of smooth muscle.
    Siegman MJ; Davidheiser S; Mooers SU; Butler TM
    J Muscle Res Cell Motil; 2013 Feb; 34(1):43-60. PubMed ID: 23233203
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phosphorylation of chicken gizzard myosin: myosin filament hypothesis of calcium regulation.
    Watanabe S
    Adv Biophys; 1985; 19():1-20. PubMed ID: 2940816
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The latch-bridge hypothesis of smooth muscle contraction.
    Murphy RA; Rembold CM
    Can J Physiol Pharmacol; 2005 Oct; 83(10):857-64. PubMed ID: 16333357
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dependence of ATP consumption on cross-bridge phosphorylation in swine carotid smooth muscle.
    Wingard CJ; Paul RJ; Murphy RA
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):111-7. PubMed ID: 7853233
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Energetic cost of activation processes during contraction of swine arterial smooth muscle.
    Wingard CJ; Paul RJ; Murphy RA
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):213-23. PubMed ID: 9175004
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction.
    Zhang W; Gunst SJ
    J Physiol; 2017 Jul; 595(13):4279-4300. PubMed ID: 28303576
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Leukotriene C(4) enhances the contraction of porcine tracheal smooth muscle through the activation of Y-27632, a rho kinase inhibitor, sensitive pathway.
    Setoguchi H; Nishimura J; Hirano K; Takahashi S; Kanaide H
    Br J Pharmacol; 2001 Jan; 132(1):111-8. PubMed ID: 11156567
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electron microscopic study of actin polymerization in airway smooth muscle.
    Herrera AM; Martinez EC; Seow CY
    Am J Physiol Lung Cell Mol Physiol; 2004 Jun; 286(6):L1161-8. PubMed ID: 14751850
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane.
    Opazo Saez A; Zhang W; Wu Y; Turner CE; Tang DD; Gunst SJ
    Am J Physiol Cell Physiol; 2004 Feb; 286(2):C433-47. PubMed ID: 14576084
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction.
    Gunst SJ; Zhang W
    Am J Physiol Cell Physiol; 2008 Sep; 295(3):C576-87. PubMed ID: 18596210
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterizations of myosin essential light chain's N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations.
    Wang L; Muthu P; Szczesna-Cordary D; Kawai M
    J Muscle Res Cell Motil; 2013 May; 34(2):93-105. PubMed ID: 23397074
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction.
    Sweeney HL; Stull JT
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):414-8. PubMed ID: 2136951
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel mechanism by which hydrogen peroxide decreases calcium sensitivity in airway smooth muscle.
    Perkins WJ; Lorenz RR; Bogoger M; Warner DO; Cremo CR; Jones KA
    Am J Physiol Lung Cell Mol Physiol; 2003 Feb; 284(2):L324-32. PubMed ID: 12388373
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Influence of ATP, ADP and AMPPNP on the energetics of contraction in skinned smooth muscle.
    Arner A; Hellstrand P; Rüegg JC
    Prog Clin Biol Res; 1987; 245():43-57. PubMed ID: 3685021
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The biophysics and biochemistry of smooth muscle contraction.
    Stephens NL; Seow CY; Halayko AJ; Jiang H
    Can J Physiol Pharmacol; 1992 Apr; 70(4):515-31. PubMed ID: 1498719
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Selected contribution: roles of focal adhesion kinase and paxillin in the mechanosensitive regulation of myosin phosphorylation in smooth muscle.
    Tang DD; Gunst SJ
    J Appl Physiol (1985); 2001 Sep; 91(3):1452-9. PubMed ID: 11509548
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effects of ethanol on CA(2+) sensitivity in airway smooth muscle.
    Hanazaki M; Jones KA; Perkins WJ; Warner DO
    Anesth Analg; 2001 Mar; 92(3):767-74. PubMed ID: 11226116
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Depletion of focal adhesion kinase by antisense depresses contractile activation of smooth muscle.
    Tang DD; Gunst SJ
    Am J Physiol Cell Physiol; 2001 Apr; 280(4):C874-83. PubMed ID: 11245605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.