BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32812412)

  • 1. Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition.
    Strbkova L; Carson BB; Vincent T; Vesely P; Chmelik R
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32812412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated classification of cell morphology by coherence-controlled holographic microscopy.
    Strbkova L; Zicha D; Vesely P; Chmelik R
    J Biomed Opt; 2017 Aug; 22(8):1-9. PubMed ID: 28836416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging.
    Lam V; Nguyen T; Bui V; Chung BM; Chang LC; Nehmetallah G; Raub C
    J Biomed Opt; 2020 Feb; 25(2):1-17. PubMed ID: 32072775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.
    Nguyen T; Bui V; Lam V; Raub CB; Chang LC; Nehmetallah G
    Opt Express; 2017 Jun; 25(13):15043-15057. PubMed ID: 28788938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro monitoring of photoinduced necrosis in HeLa cells using digital holographic microscopy and machine learning.
    Belashov AV; Zhikhoreva AA; Belyaeva TN; Kornilova ES; Salova AV; Semenova IV; Vasyutinskii OS
    J Opt Soc Am A Opt Image Sci Vis; 2020 Feb; 37(2):346-352. PubMed ID: 32118916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
    Malik R; Sharma P; Poulose S; Ahlawat S; Khare K
    J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy.
    Moon I; Yi F; Rappaz B
    Appl Opt; 2016 Jan; 55(3):A86-94. PubMed ID: 26835962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.
    Lam VK; Nguyen TC; Chung BM; Nehmetallah G; Raub CB
    Cytometry A; 2018 Mar; 93(3):334-345. PubMed ID: 29283496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantages of Fresnel biprism-based digital holographic microscopy in quantitative phase imaging.
    Hayes-Rounds C; Bogue-Jimenez B; Garcia-Sucerquia J; Skalli O; Doblas A
    J Biomed Opt; 2020 Aug; 25(8):1-11. PubMed ID: 32755077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plankton classification with high-throughput submersible holographic microscopy and transfer learning.
    MacNeil L; Missan S; Luo J; Trappenberg T; LaRoche J
    BMC Ecol Evol; 2021 Jun; 21(1):123. PubMed ID: 34134620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning with Optical Phase Signatures for Phenotypic Profiling of Cell Lines.
    Lam VK; Nguyen T; Phan T; Chung BM; Nehmetallah G; Raub CB
    Cytometry A; 2019 Jul; 95(7):757-768. PubMed ID: 31008570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Stain-Free Classification of Cancer Cells and Blood Cells Using Interferometric Phase Microscopy and Machine Learning.
    Nissim N; Dudaie M; Barnea I; Shaked NT
    Cytometry A; 2021 May; 99(5):511-523. PubMed ID: 32910546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometer-based off-axis digital holographic microscopy.
    Min J; Yao B; Trendafilova V; Ketelhut S; Kastl L; Greve B; Kemper B
    J Biophotonics; 2019 Sep; 12(9):e201900085. PubMed ID: 31169960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening.
    Rappaz B; Breton B; Shaffer E; Turcatti G
    Comb Chem High Throughput Screen; 2014 Jan; 17(1):80-8. PubMed ID: 24152227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy.
    Zikmund T; Kvasnica L; Týč M; Křížová A; Colláková J; Chmelík R
    J Microsc; 2014 Nov; 256(2):117-25. PubMed ID: 25142511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.
    Go T; Byeon H; Lee SJ
    Biosens Bioelectron; 2018 Apr; 103():12-18. PubMed ID: 29277009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set.
    Rubin M; Stein O; Turko NA; Nygate Y; Roitshtain D; Karako L; Barnea I; Giryes R; Shaked NT
    Med Image Anal; 2019 Oct; 57():176-185. PubMed ID: 31325721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid, label-free classification of tumor-reactive T cell killing with quantitative phase microscopy and machine learning.
    Kim DNH; Lim AA; Teitell MA
    Sci Rep; 2021 Sep; 11(1):19448. PubMed ID: 34593878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.