These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32812557)
1. Cu(II)-Catalysed β-silylation of dehydroalanine residues in peptides and proteins. de Vries RH; Roelfes G Chem Commun (Camb); 2020 Sep; 56(75):11058-11061. PubMed ID: 32812557 [TBL] [Abstract][Full Text] [Related]
2. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) via Cu de Vries RH; Viel JH; Kuipers OP; Roelfes G Angew Chem Int Ed Engl; 2021 Feb; 60(8):3946-3950. PubMed ID: 33185967 [TBL] [Abstract][Full Text] [Related]
3. A Water-Soluble Iridium Photocatalyst for Chemical Modification of Dehydroalanines in Peptides and Proteins. van Lier RCW; de Bruijn AD; Roelfes G Chemistry; 2021 Jan; 27(4):1430-1437. PubMed ID: 32896943 [TBL] [Abstract][Full Text] [Related]
4. Selective Modification of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) through Diels-Alder Cycloadditions on Dehydroalanine Residues. de Vries RH; Viel JH; Oudshoorn R; Kuipers OP; Roelfes G Chemistry; 2019 Oct; 25(55):12698-12702. PubMed ID: 31361053 [TBL] [Abstract][Full Text] [Related]
5. Kinetic resolution of donor-functionalised tertiary alcohols by Cu-H-catalysed stereoselective silylation using a strained silicon-stereogenic silane. Karatas B; Rendler S; Fröhlich R; Oestreich M Org Biomol Chem; 2008 Apr; 6(8):1435-40. PubMed ID: 18385850 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Modification of Dehydroalanine in Peptides and Proteins by Palladium-Mediated Cross-Coupling. de Bruijn AD; Roelfes G Chemistry; 2018 Aug; 24(48):12728-12733. PubMed ID: 29923249 [TBL] [Abstract][Full Text] [Related]
7. Determination of dehydroalanine residues in proteins and peptides: an improved method. Bartone NA; Bentley JD; Maclaren JA J Protein Chem; 1991 Dec; 10(6):603-7. PubMed ID: 1815586 [TBL] [Abstract][Full Text] [Related]
8. Dehydroamino acid residues in bioactive natural products. Wang S; Wu K; Tang YJ; Deng H Nat Prod Rep; 2024 Feb; 41(2):273-297. PubMed ID: 37942836 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic insight into copper-catalysed allylic substitutions with bis(triorganosilyl) zincs. Enantiospecific preparation of alpha-chiral silanes. Schmidtmann ES; Oestreich M Chem Commun (Camb); 2006 Sep; (34):3643-5. PubMed ID: 17047792 [TBL] [Abstract][Full Text] [Related]
10. Stereoselective alcohol silylation by dehydrogenative Si-O coupling: scope, limitations, and mechanism of the cu-h-catalyzed non-enzymatic kinetic resolution with silicon-stereogenic silanes. Rendler S; Plefka O; Karatas B; Auer G; Fröhlich R; Mück-Lichtenfeld C; Grimme S; Oestreich M Chemistry; 2008; 14(36):11512-28. PubMed ID: 19021177 [TBL] [Abstract][Full Text] [Related]
11. Post-translational Introduction of D-Alanine into Ribosomally Synthesized Peptides by the Dehydroalanine Reductase NpnJ. Yang X; van der Donk WA J Am Chem Soc; 2015 Oct; 137(39):12426-9. PubMed ID: 26361061 [TBL] [Abstract][Full Text] [Related]
12. Phosphoserine Lyase Deoxyribozymes: DNA-Catalyzed Formation of Dehydroalanine Residues in Peptides. Chandrasekar J; Wylder AC; Silverman SK J Am Chem Soc; 2015 Aug; 137(30):9575-8. PubMed ID: 26200899 [TBL] [Abstract][Full Text] [Related]
13. Photocatalytic Functionalization of Dehydroalanine-Derived Peptides in Batch and Flow. Kaplaneris N; Akdeniz M; Fillols M; Arrighi F; Raymenants F; Sanil G; Gryko DT; Noël T Angew Chem Int Ed Engl; 2024 May; 63(19):e202403271. PubMed ID: 38497510 [TBL] [Abstract][Full Text] [Related]
14. Possible Mechanisms of Nonenzymatic Formation of Dehydroalanine Residue Catalyzed by Dihydrogen Phosphate Ion. Nakayoshi T; Kato K; Kurimoto E; Oda A J Phys Chem B; 2019 Apr; 123(15):3147-3155. PubMed ID: 30916562 [TBL] [Abstract][Full Text] [Related]
15. Cu(II)-catalyzed allylic silylation of Morita-Baylis-Hillman alcohols via dual activation of Si-B bond and hydroxyl group. Xuan QQ; Zhong NJ; Ren CL; Liu L; Wang D; Chen YJ; Li CJ J Org Chem; 2013 Nov; 78(21):11076-81. PubMed ID: 24093603 [TBL] [Abstract][Full Text] [Related]
16. Site-Specific Conversion of Cysteine in a Protein to Dehydroalanine Using 2-Nitro-5-thiocyanatobenzoic Acid. Qiao Y; Yu G; Leeuwon SZ; Liu WR Molecules; 2021 Apr; 26(9):. PubMed ID: 33947165 [TBL] [Abstract][Full Text] [Related]
17. Facile chemoselective synthesis of dehydroalanine-containing peptides. Okeley NM; Zhu Y; van Der Donk WA Org Lett; 2000 Nov; 2(23):3603-6. PubMed ID: 11073655 [TBL] [Abstract][Full Text] [Related]
18. Salinipeptins: Integrated Genomic and Chemical Approaches Reveal Unusual d-Amino Acid-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) from a Great Salt Lake Streptomyces sp. Shang Z; Winter JM; Kauffman CA; Yang I; Fenical W ACS Chem Biol; 2019 Mar; 14(3):415-425. PubMed ID: 30753052 [TBL] [Abstract][Full Text] [Related]
20. DehydroalanylGly, a new post translational modification resulting from the breakdown of glutathione. Friedrich MG; Wang Z; Schey KL; Truscott RJW Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):907-913. PubMed ID: 29309825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]