These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32812567)

  • 41. Silicon nitride nanopores for nanoparticle sensing.
    Kong J; Wu H; Liu L; Xie X; Wu L; Ye X; Liu Q
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4010-6. PubMed ID: 23862441
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How Nanopore Translocation Experiments Can Measure RNA Unfolding.
    Bandarkar P; Yang H; Henley RY; Wanunu M; Whitford PC
    Biophys J; 2020 Apr; 118(7):1612-1620. PubMed ID: 32075749
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Particle Capture in Solid-State Multipores.
    Tsutsui M; Yokota K; Nakada T; Arima A; Tonomura W; Taniguchi M; Washio T; Kawai T
    ACS Sens; 2018 Dec; 3(12):2693-2701. PubMed ID: 30421923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational investigation of geometrical effects in 2D boron nitride nanopores for DNA detection.
    Zhang Y; Zhou Y; Li Z; Chen H; Zhang L; Fan J
    Nanoscale; 2020 May; 12(18):10026-10034. PubMed ID: 32367083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides.
    Goto Y; Matsui K; Yanagi I; Takeda KI
    Nanoscale; 2019 Aug; 11(30):14426-14433. PubMed ID: 31334729
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Slowing down DNA translocation through solid-state nanopores by pressure.
    Zhang H; Zhao Q; Tang Z; Liu S; Li Q; Fan Z; Yang F; You L; Li X; Zhang J; Yu D
    Small; 2013 Dec; 9(24):4112-7. PubMed ID: 23828716
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrodynamic slip on DNA observed by optical tweezers-controlled translocation experiments with solid-state and lipid-coated nanopores.
    Galla L; Meyer AJ; Spiering A; Sischka A; Mayer M; Hall AR; Reimann P; Anselmetti D
    Nano Lett; 2014 Jul; 14(7):4176-82. PubMed ID: 24935198
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interdomain dynamics explored by paramagnetic NMR.
    Russo L; Maestre-Martinez M; Wolff S; Becker S; Griesinger C
    J Am Chem Soc; 2013 Nov; 135(45):17111-20. PubMed ID: 24111622
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.
    Wen C; Zhang Z; Zhang SL
    ACS Sens; 2017 Oct; 2(10):1523-1530. PubMed ID: 28974095
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visualization of Diffusion within Nanoarrays.
    Liu Y; Holzinger A; Knittel P; Poltorak L; Gamero-Quijano A; Rickard WD; Walcarius A; Herzog G; Kranz C; Arrigan DW
    Anal Chem; 2016 Jul; 88(13):6689-95. PubMed ID: 27264360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Salt gradient enhanced sensitivity in nanopores for intracellular calcium ion detection.
    Zhang C; You Y; Xie Y; Han L; Sun D; Chen S
    Talanta; 2024 Aug; 276():126261. PubMed ID: 38761659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probing water structures in nanopores using tunneling currents.
    Boynton P; Di Ventra M
    Phys Rev Lett; 2013 Nov; 111(21):216804. PubMed ID: 24313513
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of the effect of cations on protein conformational stability using solid-state nanopores.
    Zhu L; Wu H; Xu Z; Guo L; Zhao J
    Analyst; 2024 May; 149(11):3186-3194. PubMed ID: 38639484
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the Ca
    Ababou A; Zaleska M; Pfuhl M
    Biochim Biophys Acta Proteins Proteom; 2017 Jun; 1865(6):640-651. PubMed ID: 28288938
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical studies on key factors in DNA sequencing using atomically thin molybdenum disulfide nanopores.
    Liang L; Liu F; Kong Z; Shen JW; Wang H; Wang H; Li L
    Phys Chem Chem Phys; 2018 Nov; 20(45):28886-28893. PubMed ID: 30420980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamics of Ca2+-saturated calmodulin D129N mutant studied by multiple molecular dynamics simulations.
    Likić VA; Strehler EE; Gooley PR
    Protein Sci; 2003 Oct; 12(10):2215-29. PubMed ID: 14500879
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A solid state nanopore device for investigating the magnetic properties of magnetic nanoparticles.
    Park S; Lim J; Pak YE; Moon S; Song YK
    Sensors (Basel); 2013 May; 13(6):6900-9. PubMed ID: 23708272
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins.
    Ababou A; Zaleska M
    Arch Biochem Biophys; 2015 Dec; 587():61-9. PubMed ID: 26494044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.