These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 32812596)

  • 1. Theoretical model for predicting thermoelectric properties of tin chalcogenides.
    Gupta R; Kumar N; Kaur P; Bera C
    Phys Chem Chem Phys; 2020 Sep; 22(34):18989-19008. PubMed ID: 32812596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials.
    Banik A; Roychowdhury S; Biswas K
    Chem Commun (Camb); 2018 Jun; 54(50):6573-6590. PubMed ID: 29749410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.
    Rhyee JS; Kim JH
    Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi
    Li J; Xie Y; Zhang C; Ma K; Liu F; Ao W; Li Y; Zhang C
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20064-20072. PubMed ID: 31091077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties.
    Lee EK; Yin L; Lee Y; Lee JW; Lee SJ; Lee J; Cha SN; Whang D; Hwang GS; Hippalgaonkar K; Majumdar A; Yu C; Choi BL; Kim JM; Kim K
    Nano Lett; 2012 Jun; 12(6):2918-23. PubMed ID: 22548377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS.
    Kaur P; Bera C
    Phys Chem Chem Phys; 2017 Sep; 19(36):24928-24933. PubMed ID: 28872649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phonon scattering mechanism and its effect on the temperature dependent thermal and thermoelectric properties of a silver nanowire.
    He GC; Shi LN; Hua YL; Zhu XL
    Phys Chem Chem Phys; 2022 Feb; 24(5):3059-3065. PubMed ID: 35040461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3.
    Wu HJ; Zhao LD; Zheng FS; Wu D; Pei YL; Tong X; Kanatzidis MG; He JQ
    Nat Commun; 2014 Jul; 5():4515. PubMed ID: 25072798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric Transport in Nanocomposites.
    Liu B; Hu J; Zhou J; Yang R
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally Designing High-Performance Bulk Thermoelectric Materials.
    Tan G; Zhao LD; Kanatzidis MG
    Chem Rev; 2016 Oct; 116(19):12123-12149. PubMed ID: 27580481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures.
    Girard SN; He J; Zhou X; Shoemaker D; Jaworski CM; Uher C; Dravid VP; Heremans JP; Kanatzidis MG
    J Am Chem Soc; 2011 Oct; 133(41):16588-97. PubMed ID: 21902270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the thermoelectric figure of merit.
    Goldsmid HJ
    Sci Technol Adv Mater; 2021 Apr; 22(1):280-284. PubMed ID: 33907527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-Induced Ultrahigh Electron Mobility and Thermoelectric Figure of Merit in Monolayer α-Te.
    Ma J; Meng F; He J; Jia Y; Li W
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43901-43910. PubMed ID: 32870654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals.
    Hwang J; Kim H; Han MK; Hong J; Shim JH; Tak JY; Lim YS; Jin Y; Kim J; Park H; Lee DK; Bahk JH; Kim SJ; Kim W
    ACS Nano; 2019 Jul; 13(7):8347-8355. PubMed ID: 31260259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two functionals approach in DFT for the prediction of thermoelectric properties of Fe
    Shastri SS; Pandey SK
    J Phys Condens Matter; 2019 Oct; 31(43):435701. PubMed ID: 31252427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Record High Thermoelectric Figure of Merit of a III-V Semiconductor InGaSb by Defects Engineering via the Addition of Excess Constituent Elements.
    Velu NK; Hayakawa Y; Udono H; Sakane S; Inatomi Y
    ACS Appl Mater Interfaces; 2024 Sep; 16(35):46433-46441. PubMed ID: 39169895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric Properties of SnS with Na-Doping.
    Zhou B; Li S; Li W; Li J; Zhang X; Lin S; Chen Z; Pei Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34033-34041. PubMed ID: 28895395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion.
    Zhou J; Liao B; Qiu B; Huberman S; Esfarjani K; Dresselhaus MS; Chen G
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14777-82. PubMed ID: 26627231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n-type PbTe with Enhanced Thermoelectric Performance.
    Wang Z; Wang G; Wang R; Zhou X; Chen Z; Yin C; Tang M; Hu Q; Tang J; Ang R
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22401-22407. PubMed ID: 29893540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Average Thermoelectric Figure of Merit of the PbTe-SrTe-MnTe Alloy.
    Luo J; You L; Zhang J; Guo K; Zhu H; Gu L; Yang Z; Li X; Yang J; Zhang W
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8729-8736. PubMed ID: 28256136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.