These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 32812614)

  • 1. Correction: Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects.
    Kang P; Tian Z; Yang S; Yu W; Zhu H; Bachman H; Zhao S; Zhang P; Wang Z; Zhong R; Huang TJ
    Lab Chip; 2020 Sep; 20(18):3468. PubMed ID: 32812614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects.
    Kang P; Tian Z; Yang S; Yu W; Zhu H; Bachman H; Zhao S; Zhang P; Wang Z; Zhong R; Huang TJ
    Lab Chip; 2020 Mar; 20(5):987-994. PubMed ID: 32010910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of slanted and quasi-slanted SAW transducers.
    Bausk E; Taziev R; Lee A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Aug; 51(8):1002-9. PubMed ID: 15344405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic computer-aided design of SAW filters using slanted finger interdigital transducers.
    Yatsuda H; Yamanouchi K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):140-7. PubMed ID: 18238525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design technique for nonlinear phase SAW filters using slanted finger interdigital transducers.
    Yatsuda H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):41-7. PubMed ID: 18244156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAW filters including one-focus slanted finger interdigital transducers.
    Martin G; Steiner B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jan; 50(1):94-8. PubMed ID: 12578141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical and experimental study of low-loss SAW filters with interdigitated interdigital transducers.
    Smith PM; Campbell CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):10-5. PubMed ID: 18284944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design techniques for SAW filters using slanted finger interdigital transducers.
    Yatsuda H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):453-9. PubMed ID: 18244143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Touching the microworld with force-feedback optical tweezers.
    Pacoret C; Bowman R; Gibson G; Haliyo S; Carberry D; Bergander A; Régnier S; Padgett M
    Opt Express; 2009 Jun; 17(12):10259-64. PubMed ID: 19506679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAW focusing by circular-arc interdigital transducers on YZ-LiNbO(3).
    Fang SR; Zhang SY; Lu ZF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(2):178-84. PubMed ID: 18284965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic Acoustic Tweezers for 5-DoF Manipulation of Nanocarrier Clusters toward Targeted Drug Delivery.
    Cao HX; Jung D; Lee HS; Nguyen VD; Choi E; Kang B; Park JO; Kim CS
    Pharmaceutics; 2022 Jul; 14(7):. PubMed ID: 35890382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.
    Liu Y; Yu M
    Opt Express; 2009 Aug; 17(16):13624-38. PubMed ID: 19654770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction: Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1843. PubMed ID: 28474041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Round-tip dielectrophoresis-based tweezers for single micro-object manipulation.
    Kodama T; Osaki T; Kawano R; Kamiya K; Miki N; Takeuchi S
    Biosens Bioelectron; 2013 Sep; 47():206-12. PubMed ID: 23570681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction: High-throughput cell focusing and separation via acoustofluidic tweezers.
    Wu M; Chen K; Yang S; Wang Z; Huang PH; Mai J; Li ZY; Huang TJ
    Lab Chip; 2020 Sep; 20(18):3470. PubMed ID: 32812612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional scholte wave generation and detection using interdigital capacitive micromachined ultrasonic transducers.
    McLean J; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):756-64. PubMed ID: 15244289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdigital transducer analysis using equivalent PSpice model.
    Ljrbańczyk M; Waltar Z; Jakubik W
    Ultrasonics; 2002 Jun; 39(8):595-9. PubMed ID: 12109551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.