These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32812748)

  • 1. Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy.
    Xu J; Ren Z; Dong B; Liu X; Wang C; Tian Y; Lee C
    ACS Nano; 2020 Sep; 14(9):12159-12172. PubMed ID: 32812748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Infrared-Compatible Nanofluidic Devices for Plasmon-Enhanced Infrared Absorption Spectroscopy.
    Le THH; Matsushita T; Ohta R; Shimoda Y; Matsui H; Kitamori T
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33266007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules.
    Le THH; Tanaka T
    ACS Nano; 2017 Oct; 11(10):9780-9788. PubMed ID: 28945355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Chemical Sensing Platform Based on Dual-Resonant Infrared Plasmonic Perfect Absorber for On-Chip Detection of Poly(ethyl cyanoacrylate).
    Li D; Zhou H; Hui X; He X; Huang H; Zhang J; Mu X; Lee C; Yang Y
    Adv Sci (Weinh); 2021 Oct; 8(20):e2101879. PubMed ID: 34423591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities.
    Chen X; Ciracì C; Smith DR; Oh SH
    Nano Lett; 2015 Jan; 15(1):107-13. PubMed ID: 25423481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive Molecule Detection Based on Infrared Metamaterial Absorber with Vertical Nanogap.
    Hwang I; Kim M; Yu J; Lee J; Choi JH; Park SA; Chang WS; Lee J; Jung JY
    Small Methods; 2021 Aug; 5(8):e2100277. PubMed ID: 34927875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps.
    Yoo D; Mohr DA; Vidal-Codina F; John-Herpin A; Jo M; Kim S; Matson J; Caldwell JD; Jeon H; Nguyen NC; Martin-Moreno L; Peraire J; Altug H; Oh SH
    Nano Lett; 2018 Mar; 18(3):1930-1936. PubMed ID: 29437401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy.
    Chen C; Mohr DA; Choi HK; Yoo D; Li M; Oh SH
    Nano Lett; 2018 Dec; 18(12):7601-7608. PubMed ID: 30216715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing.
    Lin PT; Kwok SW; Lin HY; Singh V; Kimerling LC; Whitesides GM; Agarwal A
    Nano Lett; 2014 Jan; 14(1):231-8. PubMed ID: 24328355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion-based intertwined SEIRA and SPR effect detection of 2,4-dinitrotoluene using a plasmonic metasurface.
    Fabas A; El Ouazzani H; Hugonin JP; Dupuis C; Haidar R; Greffet JJ; Bouchon P
    Opt Express; 2020 Dec; 28(26):39595-39605. PubMed ID: 33379505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
    Guo X; Hu H; Liao B; Zhu X; Yang X; Dai Q
    Nanotechnology; 2018 May; 29(18):184004. PubMed ID: 29457777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Enhanced Infrared Absorption Using Single Conducting Polymer Antennas.
    Li X; Zhu S; Zhu G; Wang J; Ding Y; Du W; Wang T
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14357-14363. PubMed ID: 38440977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing.
    Chen C; Oh SH; Li M
    Opt Express; 2020 Jan; 28(2):2020-2036. PubMed ID: 32121901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waveguide-integrated mid-infrared plasmonics with high-efficiency coupling for ultracompact surface-enhanced infrared absorption spectroscopy.
    Mohr DA; Yoo D; Chen C; Li M; Oh SH
    Opt Express; 2018 Sep; 26(18):23540-23549. PubMed ID: 30184853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Organized Nanorod Arrays for Large-Area Surface-Enhanced Infrared Absorption.
    Giordano MC; Tzschoppe M; Barelli M; Vogt J; Huck C; Canepa F; Pucci A; Buatier de Mongeot F
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11155-11162. PubMed ID: 32049480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas.
    Neubrech F; Huck C; Weber K; Pucci A; Giessen H
    Chem Rev; 2017 Apr; 117(7):5110-5145. PubMed ID: 28358482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-Metal-Based Nanophotonic Structures for High-Performance SEIRA Sensing.
    Miao X; Luk TS; Liu PQ
    Adv Mater; 2022 Mar; 34(10):e2107950. PubMed ID: 34991178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-band complementary metamaterial perfect absorber for multispectral molecular sensing.
    Zhang L; Lu W; Zhu L; Xu H; Wang H; Pan H; An Z
    Opt Express; 2023 Sep; 31(19):31024-31038. PubMed ID: 37710631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy.
    Dong L; Yang X; Zhang C; Cerjan B; Zhou L; Tseng ML; Zhang Y; Alabastri A; Nordlander P; Halas NJ
    Nano Lett; 2017 Sep; 17(9):5768-5774. PubMed ID: 28787169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides.
    Lin PT; Giammarco J; Borodinov N; Savchak M; Singh V; Kimerling LC; Tan DT; Richardson KA; Luzinov I; Agarwal A
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11189-94. PubMed ID: 25924561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.