These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32812839)

  • 1. Perceptual and Electrophysiological Correlates of Fixed Versus Moving Sound Source Lateralization.
    St George BV; Cone B
    J Speech Lang Hear Res; 2020 Sep; 63(9):3176-3194. PubMed ID: 32812839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateralization of Interaural Level Differences with Multiple Electrode Stimulation in Bilateral Cochlear-Implant Listeners.
    Stakhovskaya OA; Goupell MJ
    Ear Hear; 2017; 38(1):e22-e38. PubMed ID: 27579987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping lateralization of click trains in younger and older populations.
    Babkoff H; Muchnik C; Ben-David N; Furst M; Even-Zohar S; Hildesheimer M
    Hear Res; 2002 Mar; 165(1-2):117-27. PubMed ID: 12031521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion.
    Shestopalova LB; Petropavlovskaia EA; Vaitulevich SP; Nikitin NI
    Neuropsychologia; 2016 Oct; 91():465-479. PubMed ID: 27641235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques.
    Palomäki KJ; Tiitinen H; Mäkinen V; May PJ; Alku P
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):364-79. PubMed ID: 16099350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Right hemispheric dominance for echo suppression.
    Spierer L; Bourquin NM; Tardif E; Murray MM; Clarke S
    Neuropsychologia; 2009 Jan; 47(2):465-72. PubMed ID: 18983863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses.
    Junius D; Riedel H; Kollmeier B
    Hear Res; 2007 Mar; 225(1-2):91-104. PubMed ID: 17270375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateralization of interimplant timing and level differences in children who use bilateral cochlear implants.
    Salloum CA; Valero J; Wong DD; Papsin BC; van Hoesel R; Gordon KA
    Ear Hear; 2010 Aug; 31(4):441-56. PubMed ID: 20489647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural correlates of sound externalization.
    Callan A; Callan DE; Ando H
    Neuroimage; 2013 Feb; 66():22-7. PubMed ID: 23108271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Click lateralization is related to the beta component of the dichotic brainstem auditory evoked potentials of human subjects.
    Furst M; Levine RA; McGaffigan PM
    J Acoust Soc Am; 1985 Nov; 78(5):1644-51. PubMed ID: 4067079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences.
    Johnson BW; Hautus MJ
    Neuropsychologia; 2010 Jul; 48(9):2610-9. PubMed ID: 20466010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of temporal and amplitude cues by schizophrenics, psychiatric controls, and aged normals in auditory lateralization.
    Balogh DW; Leventhal DB
    J Nerv Ment Dis; 1982 Sep; 170(9):553-60. PubMed ID: 7108504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of eye position on auditory lateralization.
    Lewald J; Ehrenstein WH
    Exp Brain Res; 1996 Mar; 108(3):473-85. PubMed ID: 8801127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural rate difference model can account for lateralization of high-frequency stimuli.
    Klug J; Schmors L; Ashida G; Dietz M
    J Acoust Soc Am; 2020 Aug; 148(2):678. PubMed ID: 32873019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Across-channel interaural-level-difference processing demonstrates frequency dependence.
    Goupell MJ; Stakhovskaya OA
    J Acoust Soc Am; 2018 Feb; 143(2):645. PubMed ID: 29495743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical Processing of Level Cues for Spatial Hearing is Impaired in Children with Prelingual Deafness Despite Early Bilateral Access to Sound.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    Brain Topogr; 2018 Mar; 31(2):270-287. PubMed ID: 29119311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Searching for auditory targets in external space and in working memory: Electrophysiological mechanisms underlying perceptual and retroactive spatial attention.
    Klatt LI; Getzmann S; Wascher E; Schneider D
    Behav Brain Res; 2018 Nov; 353():98-107. PubMed ID: 29958962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.