These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32812974)

  • 1. Peak force visible microscopy.
    Wang H; Wang L; Shang Y; Yazdanparast Tafti S; Cao W; Ning Z; Zhang XF; Xu XG
    Soft Matter; 2020 Sep; 16(36):8372-8379. PubMed ID: 32812974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule imaging of cell surfaces using near-field nanoscopy.
    Hinterdorfer P; Garcia-Parajo MF; Dufrêne YF
    Acc Chem Res; 2012 Mar; 45(3):327-36. PubMed ID: 21992025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photovoltaic and photothermal effects induced by visible laser radiation in atomic force microscopy probes.
    Pichois MD; Henning X; Hurier MA; Vomir M; Barsella A; Mager L; Donnio B; Gallani JL; Rastei MV
    Ultramicroscopy; 2022 Nov; 241():113601. PubMed ID: 36027687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of chromosomes at nano-meter scale resolution using scanning near-field optical/atomic force microscopy.
    Ohtani T; Shichirii M; Fukushi D; Sugiyama S; Yoshino T; Kobori T; Hagiwara S; Ushiki T
    Arch Histol Cytol; 2002 Dec; 65(5):425-34. PubMed ID: 12680458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principle and applications of peak force infrared microscopy.
    Wang L; Wang H; Xu XG
    Chem Soc Rev; 2022 Jul; 51(13):5268-5286. PubMed ID: 35703031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision.
    Baumann F; Heucke SF; Pippig DA; Gaub HE
    Rev Sci Instrum; 2015 Mar; 86(3):035109. PubMed ID: 25832277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-Phase Peak Force Infrared Microscopy for Chemical Nanoimaging and Spectroscopy.
    Wang H; González-Fialkowski JM; Li W; Xie Q; Yu Y; Xu XG
    Anal Chem; 2021 Feb; 93(7):3567-3575. PubMed ID: 33573375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total Internal Reflection Peak Force Infrared Microscopy.
    Wang H; Wang L; Janzen E; Edgar JH; Xu XG
    Anal Chem; 2021 Jan; 93(2):731-736. PubMed ID: 33301297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy of red-light photoreceptors using peakforce quantitative nanomechanical property mapping.
    Kroeger ME; Sorenson BA; Thomas JS; Stojković EA; Tsonchev S; Nicholson KT
    J Vis Exp; 2014 Oct; (92):e52164. PubMed ID: 25407118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-scale imaging of chromosomes and DNA by scanning near-field optical/atomic force microscopy.
    Yoshino T; Sugiyama S; Hagiwara S; Fukushi D; Shichiri M; Nakao H; Kim JM; Hirose T; Muramatsu H; Ohtani T
    Ultramicroscopy; 2003; 97(1-4):81-7. PubMed ID: 12801660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning Near-field Optical/Atomic Force Microscopy detection of fluorescence in situ hybridization signals beyond the optical limit.
    Fukushi D; Shichiri M; Sugiyama S; Yoshino T; Hagiwara S; Ohtani T
    Exp Cell Res; 2003 Oct; 289(2):237-44. PubMed ID: 14499624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically monitoring the mechanical assembly of single molecules.
    Kufer SK; Strackharn M; Stahl SW; Gumpp H; Puchner EM; Gaub HE
    Nat Nanotechnol; 2009 Jan; 4(1):45-9. PubMed ID: 19119282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-diffraction nano manipulation using STED AFM.
    Chacko JV; Canale C; Harke B; Diaspro A
    PLoS One; 2013; 8(6):e66608. PubMed ID: 23799123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology.
    Kassies R; van der Werf KO; Lenferink A; Hunter CN; Olsen JD; Subramaniam V; Otto C
    J Microsc; 2005 Jan; 217(Pt 1):109-16. PubMed ID: 15655068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving single-molecule assembled patterns with superresolution blink-microscopy.
    Cordes T; Strackharn M; Stahl SW; Summerer W; Steinhauer C; Forthmann C; Puchner EM; Vogelsang J; Gaub HE; Tinnefeld P
    Nano Lett; 2010 Feb; 10(2):645-51. PubMed ID: 20017533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy as nanorobot.
    Xi N; Fung CK; Yang R; Lai KW; Wang DH; Seiffert-Sinha K; Sinha AA; Li G; Liu L
    Methods Mol Biol; 2011; 736():485-503. PubMed ID: 21660745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.