These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32813039)

  • 21. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.
    Gargouri B; Karray F; Mhiri N; Aloui F; Sayadi S
    J Hazard Mater; 2011 May; 189(1-2):427-34. PubMed ID: 21419572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of lead co-contamination on ecotoxicity and the bacterial community during the bioremediation of total petroleum hydrocarbon-contaminated soils.
    Khudur LS; Shahsavari E; Webster GT; Nugegoda D; Ball AS
    Environ Pollut; 2019 Oct; 253():939-948. PubMed ID: 31351302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradation of the petroleum hydrocarbons using an anoxic packed-bed biofilm reactor with in-situ biosurfactant-producing bacteria.
    Molaei S; Moussavi G; Talebbeydokhti N; Shekoohiyan S
    J Hazard Mater; 2022 Jan; 421():126699. PubMed ID: 34330075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic Fe
    Ma B; Wang S; Li Z; Gao M; Li S; Guo L; She Z; Zhao Y; Zheng D; Jin C; Wang X; Gao F
    Bioresour Technol; 2017 Feb; 225():377-385. PubMed ID: 27956330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vertical subsurface flow constructed wetlands for the removal of petroleum contaminants from secondary refinery effluent at the Kaduna refining plant (Kaduna, Nigeria).
    Mustapha HI; van Bruggen HJJA; Lens PNL
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30451-30462. PubMed ID: 30168108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ bioremediation potential of an oily sludge-degrading bacterial consortium.
    Mishra S; Jyot J; Kuhad RC; Lal B
    Curr Microbiol; 2001 Nov; 43(5):328-35. PubMed ID: 11688796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.
    Wu M; Ye X; Chen K; Li W; Yuan J; Jiang X
    Environ Pollut; 2017 Apr; 223():657-664. PubMed ID: 28196719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field trial on removal of petroleum-hydrocarbon pollutants using a microbial consortium for bioremediation and rhizoremediation.
    Pizarro-Tobías P; Niqui JL; Roca A; Solano J; Fernández M; Bastida F; García C; Ramos JL
    Environ Microbiol Rep; 2015 Feb; 7(1):85-94. PubMed ID: 25870876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eco-friendly adsorbents based on abietic acid, boswellic acid, and chitosan/magnetite for removing waste oil from the surface of the water.
    Fekry M; Elmesallamy SM; El-Rahman NRA; Bekhit M; Elsaied HA
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):64633-64646. PubMed ID: 35474426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds.
    Hui C; Shen C; Tian J; Bao L; Ding H; Li C; Tian Y; Shi X; Gao HJ
    Nanoscale; 2011 Feb; 3(2):701-5. PubMed ID: 21103488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrocarbon biodegradation in oxygen-limited sequential batch reactors by consortium from weathered, oil-contaminated soil.
    Medina-Moreno SA; Huerta-Ochoa S; Gutiérrez-Rojas M
    Can J Microbiol; 2005 Mar; 51(3):231-9. PubMed ID: 15920621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An investigation on the capability of magnetically separable Fe
    Hesas RH; Baei MS; Rostami H; Gardy J; Hassanpour A
    J Environ Manage; 2019 Jul; 241():525-534. PubMed ID: 30301659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioremediation of petroleum hydrocarbons by vermicomposting process bioaugmentated with indigenous bacterial consortium isolated from petroleum oily sludge.
    Koolivand A; Saeedi R; Coulon F; Kumar V; Villaseñor J; Asghari F; Hesampoor F
    Ecotoxicol Environ Saf; 2020 Jul; 198():110645. PubMed ID: 32344266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of biocompatible Fe3O4 nanoparticles.
    Sun J; Zhou S; Hou P; Yang Y; Weng J; Li X; Li M
    J Biomed Mater Res A; 2007 Feb; 80(2):333-41. PubMed ID: 17001648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application.
    Karamipour Sh; Sadjadi MS; Farhadyar N
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():146-55. PubMed ID: 25879984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloro-Modified Magnetic Fe
    Ulu A; Noma SAA; Koytepe S; Ates B
    Appl Biochem Biotechnol; 2019 Mar; 187(3):938-956. PubMed ID: 30101367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of hydrocarbon contamination by immobilized bacterial cells.
    Rahman RN; Ghaza FM; Salleh AB; Basri M
    J Microbiol; 2006 Jun; 44(3):354-9. PubMed ID: 16820766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile synthesis of yeast cross-linked Fe
    Rajesh Kumar S; Jayavignesh V; Selvakumar R; Swaminathan K; Ponpandian N
    J Colloid Interface Sci; 2016 Dec; 484():183-195. PubMed ID: 27610473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for phenol removal at relatively wide pH values.
    Wang W; Mao Q; He H; Zhou M
    Water Sci Technol; 2013; 68(11):2367-73. PubMed ID: 24334884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons.
    Arulazhagan P; Vasudevan N
    Mar Pollut Bull; 2009 Feb; 58(2):256-62. PubMed ID: 18995870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.