These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32813255)

  • 1. Generation of Functional Genetic Study Models in Zebrafish Using CRISPR-Cas9.
    Carmona-Aldana F; Nuñez-Martinez HN; Peralta-Alvarez CA; Tapia-Urzua G; Recillas-Targa F
    Methods Mol Biol; 2021; 2174():255-262. PubMed ID: 32813255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic Expression and Genome Editing by Electroporation of Zebrafish Embryos.
    Zhang C; Ren Z; Gong Z
    Mar Biotechnol (NY); 2020 Oct; 22(5):644-650. PubMed ID: 32748174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of zebrafish models by CRISPR /Cas9 genome editing.
    Hruscha A; Schmid B
    Methods Mol Biol; 2015; 1254():341-50. PubMed ID: 25431076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish.
    Vejnar CE; Moreno-Mateos MA; Cifuentes D; Bazzini AA; Giraldez AJ
    Cold Spring Harb Protoc; 2016 Oct; 2016(10):. PubMed ID: 27698232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique.
    Gasanov EV; Jędrychowska J; Pastor M; Wiweger M; Methner A; Korzh VP
    Mol Biol Rep; 2021 Feb; 48(2):1951-1957. PubMed ID: 33481178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.
    Chen Y; Zeng S; Hu R; Wang X; Huang W; Liu J; Wang L; Liu G; Cao Y; Zhang Y
    PLoS One; 2017; 12(8):e0182528. PubMed ID: 28800611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.
    Feng Y; Chen C; Han Y; Chen Z; Lu X; Liang F; Li S; Qin W; Lin S
    G3 (Bethesda); 2016 Aug; 6(8):2517-21. PubMed ID: 27317783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos.
    Naert T; Tulkens D; Edwards NA; Carron M; Shaidani NI; Wlizla M; Boel A; Demuynck S; Horb ME; Coucke P; Willaert A; Zorn AM; Vleminckx K
    Sci Rep; 2020 Sep; 10(1):14662. PubMed ID: 32887910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9-Mediated Genomic Deletions Protocol in Zebrafish.
    Amorim JP; Bordeira-Carriço R; Gali-Macedo A; Perrod C; Bessa J
    STAR Protoc; 2020 Dec; 1(3):100208. PubMed ID: 33377102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable base editing in zebrafish using a modified CRISPR-Cas9 system.
    Qin W; Lu X; Lin S
    Methods; 2018 Nov; 150():19-23. PubMed ID: 30076894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System.
    Yin L; Jao LE; Chen W
    Methods Mol Biol; 2015; 1332():205-17. PubMed ID: 26285757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos.
    Takasugi PR; Wang S; Truong KT; Drage EP; Kanishka SN; Higbee MA; Bamidele N; Ojelabi O; Sontheimer EJ; Gagnon JA
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34735006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple Protocol for Generating and Genotyping Genome-Edited Mice With CRISPR-Cas9 Reagents.
    Fernández A; Morín M; Muñoz-Santos D; Josa S; Montero A; Rubio-Fernández M; Cantero M; Fernández J; Del Hierro MJ; Castrillo M; Moreno-Pelayo MÁ; Montoliu L
    Curr Protoc Mouse Biol; 2020 Mar; 10(1):e69. PubMed ID: 32159922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Accessible Protocol for the Generation of CRISPR-Cas9 Knockouts Using INDELs in Zebrafish.
    Moravec CE; Pelegri FJ
    Methods Mol Biol; 2019; 1920():377-392. PubMed ID: 30737704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic genome editing of the genes spanning an entire chromosome by CRISPR/Cas9 in a vertebrate-zebrafish (Danio rerio).
    Gong Y; Yang B; Chen W
    Sci China Life Sci; 2020 Jul; 63(7):1096-1097. PubMed ID: 32140907
    [No Abstract]   [Full Text] [Related]  

  • 18. Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish.
    Hoshijima K; Jurynec MJ; Klatt Shaw D; Jacobi AM; Behlke MA; Grunwald DJ
    Dev Cell; 2019 Dec; 51(5):645-657.e4. PubMed ID: 31708433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Editing in Zebrafish Using High-Fidelity Cas9 Nucleases: Choosing the Right Nuclease for the Task.
    Prykhozhij SV; Cordeiro-Santanach A; Caceres L; Berman JN
    Methods Mol Biol; 2020; 2115():385-405. PubMed ID: 32006412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swift Large-scale Examination of Directed Genome Editing.
    Hammouda OT; Böttger F; Wittbrodt J; Thumberger T
    PLoS One; 2019; 14(3):e0213317. PubMed ID: 30835740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.