These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 32813500)

  • 41. Indirect Phase Transformation of CuO to Cu2O on a Nanowire Surface.
    Wu F; Banerjee S; Li H; Myung Y; Banerjee P
    Langmuir; 2016 May; 32(18):4485-93. PubMed ID: 27093222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wet Chemically Synthesized CuO Bipods and their Optical Properties.
    Samanta PK; Saha A; Kamilya T
    Recent Pat Nanotechnol; 2016; 10(1):20-5. PubMed ID: 27018270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Understanding the interaction of carbon quantum dots with CuO and Cu
    Bharathi D; Krishna RH; Siddlingeshwar B; Divakar DD; Alkheraif AA
    J Hazard Mater; 2019 May; 369():17-24. PubMed ID: 30763795
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mind the Interface Gap: Exposing Hidden Interface Defects at the Epitaxial Heterostructure between CuO and Cu
    Živković A; Mallia G; King HE; de Leeuw NH; Harrison NM
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56331-56343. PubMed ID: 36480491
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cu/CuO@ZnO Hollow Nanofiber Gas Sensor: Effect of Hollow Nanofiber Structure and P-N Junction on Operating Temperature and Sensitivity.
    Hwang SH; Kim YK; Hong SH; Lim SK
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modification of large area Cu
    Panzeri G; Cristina M; Jagadeesh MS; Bussetti G; Magagnin L
    Sci Rep; 2020 Oct; 10(1):18730. PubMed ID: 33127936
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interface phenomena in magnetron sputtered Cu
    Jensen IJT; Gorantla S; Løvvik OM; Gan J; Nguyen PD; Monakhov E; Svensson BG; Gunnæs AE; Diplas S
    J Phys Condens Matter; 2017 Nov; 29(43):435002. PubMed ID: 28829336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcination Strategy for Scalable Synthesis of Pithecellobium-Type Hierarchical Dual-Phase Nanostructured Cu
    Sahu KK; Raj B; Basu S; Mohapatra M
    ACS Omega; 2021 Jan; 6(2):1108-1118. PubMed ID: 33490770
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light-Irradiated Electrochemical Direct Construction of Cu
    Izaki M; Koyama T; Khoo PL; Shinagawa T
    ACS Omega; 2020 Jan; 5(1):683-691. PubMed ID: 31956818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution.
    Zhao Y; Zhao J; Li Y; Ma D; Hou S; Li L; Hao X; Wang Z
    Nanotechnology; 2011 Mar; 22(11):115604. PubMed ID: 21297232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity.
    Sasmal AK; Dutta S; Pal T
    Dalton Trans; 2016 Feb; 45(7):3139-50. PubMed ID: 26776952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An electrochemical sensor derived from Cu-BTB MOF for the efficient detection of diflubenzuron in food and environmental samples.
    Ji XX; Liu YL; Chang XY; Li RL; Ye F; Yang L; Fu Y
    Food Chem; 2023 Dec; 428():136802. PubMed ID: 37421661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite.
    Sudha V; Murugadoss G; Thangamuthu R
    Sci Rep; 2021 Feb; 11(1):3413. PubMed ID: 33564014
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells.
    Chen LC; Chen CC; Liang KC; Chang SH; Tseng ZL; Yeh SC; Chen CT; Wu WT; Wu CG
    Nanoscale Res Lett; 2016 Dec; 11(1):402. PubMed ID: 27637894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultra-sensitive and selective p-xylene gas sensor at low operating temperature utilizing Zn doped CuO nanoplatelets: Insignificant vestiges of oxygen vacancies.
    Mnethu O; Nkosi SS; Kortidis I; Motaung DE; Kroon RE; Swart HC; Ntsasa NG; Tshilongo J; Moyo T
    J Colloid Interface Sci; 2020 Sep; 576():364-375. PubMed ID: 32460099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stoichiometry, Morphology, and Size-Controlled Electrochemical Fabrication of Cu
    Kartal C; Hanedar Y; Öznülüer T; Demir Ü
    Langmuir; 2017 Apr; 33(16):3960-3967. PubMed ID: 28391680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sonochemical-assisted synthesis of CuO/Cu
    Mosleh S; Rahimi MR; Ghaedi M; Dashtian K; Hajati S
    Ultrason Sonochem; 2018 Jan; 40(Pt A):601-610. PubMed ID: 28946465
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thickness dependence of the room-temperature ethanol sensor properties of Cu
    Aparicio-Huacarpuma BD; H Aragón FF; Villegas-Lelovsky L; Soncco CM; Pacheco-Salazar DG; Guerra JA; Morais PC; da Silva SW; Coaquira JAH
    Nanotechnology; 2024 May; 35(32):. PubMed ID: 38710177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.