These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32813715)

  • 1. Early adaptation to eolian sand dunes by basal amniotes is documented in two Pennsylvanian Grand Canyon trackways.
    Rowland SM; Caputo MV; Jensen ZA
    PLoS One; 2020; 15(8):e0237636. PubMed ID: 32813715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal sauropodomorph locomotion: ichnological lessons from the Late Triassic trackways of bipeds and quadrupeds (Elliot Formation, main Karoo Basin).
    Sciscio L; Bordy EM; Lockley MG; Abrahams M
    PeerJ; 2023; 11():e15970. PubMed ID: 37790620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the Pliensbachian-Toarcian Karoo firewalkers: Trackways of quadruped and biped dinosaurs and mammaliaforms.
    Bordy EM; Rampersadh A; Abrahams M; Lockley MG; Head HV
    PLoS One; 2020; 15(1):e0226847. PubMed ID: 31995575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 'terror of tyrannosaurs': the first trackways of tyrannosaurids and evidence of gregariousness and pathology in Tyrannosauridae.
    McCrea RT; Buckley LG; Farlow JO; Lockley MG; Currie PJ; Matthews NA; Pemberton SG
    PLoS One; 2014; 9(7):e103613. PubMed ID: 25054328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LIDAR-based characterization and conservation of the first theropod dinosaur trackways from Arkansas, USA.
    Platt BF; Suarez CA; Boss SK; Williamson M; Cothren J; Kvamme JAC
    PLoS One; 2018; 13(1):e0190527. PubMed ID: 29293618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A temnospondyl trackway from the early Mesozoic of western Gondwana and its implications for basal tetrapod locomotion.
    Marsicano CA; Wilson JA; Smith RM
    PLoS One; 2014; 9(8):e103255. PubMed ID: 25099971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrapod trackways from the early Middle Devonian period of Poland.
    Niedźwiedzki G; Szrek P; Narkiewicz K; Narkiewicz M; Ahlberg PE
    Nature; 2010 Jan; 463(7277):43-8. PubMed ID: 20054388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manus track preservation bias as a key factor for assessing trackmaker identity and quadrupedalism in basal ornithopods.
    Castanera D; Vila B; Razzolini NL; Falkingham PL; Canudo JI; Manning PL; Galobart A
    PLoS One; 2013; 8(1):e54177. PubMed ID: 23349817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-marine palaeoenvironment associated to the earliest tetrapod tracks.
    Qvarnström M; Szrek P; Ahlberg PE; Niedźwiedzki G
    Sci Rep; 2018 Jan; 8(1):1074. PubMed ID: 29348562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laetoli's lost tracks: 3D generated mean shape and missing footprints.
    Bennett MR; Reynolds SC; Morse SA; Budka M
    Sci Rep; 2016 Feb; 6():21916. PubMed ID: 26902912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new insect trackway from the Upper Jurassic-Lower Cretaceous eolian sandstones of São Paulo State, Brazil: implications for reconstructing desert paleoecology.
    Peixoto BCPEM; Mángano MG; Minter NJ; Dos Reis Fernandes LB; Fernandes MA
    PeerJ; 2020; 8():e8880. PubMed ID: 32509444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late Ediacaran trackways produced by bilaterian animals with paired appendages.
    Chen Z; Chen X; Zhou C; Yuan X; Xiao S
    Sci Adv; 2018 Jun; 4(6):eaao6691. PubMed ID: 29881773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megalosauripus transjuranicus ichnosp. nov. A new Late Jurassic theropod ichnotaxon from NW Switzerland and implications for tridactyl dinosaur ichnology and ichnotaxomy.
    Razzolini NL; Belvedere M; Marty D; Paratte G; Lovis C; Cattin M; Meyer CA
    PLoS One; 2017; 12(7):e0180289. PubMed ID: 28715504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the morphological variability of
    Buchwitz M; Voigt S
    PeerJ; 2018; 6():e4346. PubMed ID: 29404225
    [No Abstract]   [Full Text] [Related]  

  • 15. Tetrapod tracks in Permo-Triassic eolian beds of southern Brazil (Paraná Basin).
    Francischini H; Dentzien-Dias P; Lucas SG; Schultz CL
    PeerJ; 2018; 6():e4764. PubMed ID: 29796341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-trackway morphological variations due to substrate consistency: the El Frontal dinosaur tracksite (Lower Cretaceous, Spain).
    Razzolini NL; Vila B; Castanera D; Falkingham PL; Barco JL; Canudo JI; Manning PL; Galobart A
    PLoS One; 2014; 9(4):e93708. PubMed ID: 24699696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunasniyoj, a dinosaur tracksite from the Jurassic-Cretaceous boundary of Bolivia.
    Apesteguía S; Gallina PA
    An Acad Bras Cienc; 2011 Mar; 83(1):267-77. PubMed ID: 21437385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trackway evidence for large bipedal crocodylomorphs from the Cretaceous of Korea.
    Kim KS; Lockley MG; Lim JD; Bae SM; Romilio A
    Sci Rep; 2020 Jun; 10(1):8680. PubMed ID: 32528068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dinosaur locomotion from a new trackway.
    Day JJ; Norman DB; Upchurch P; Powell HP
    Nature; 2002 Jan; 415(6871):494-5. PubMed ID: 11823849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Gaits of an Ancient Crocodile-Line Archosaur Through Trajectory Optimization, With Comparison to Fossil Trackways.
    Polet DT; Hutchinson JR
    Front Bioeng Biotechnol; 2021; 9():800311. PubMed ID: 35186914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.