These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32813751)

  • 1. Abundance and morphology of charcoal in sediments provide no evidence of massive slash-and-burn agriculture during the Neolithic Kuahuqiao culture, China.
    Hu Y; Zhou B; Lu Y; Zhang J; Min S; Dai M; Xu S; Yang Q; Zheng H
    PLoS One; 2020; 15(8):e0237592. PubMed ID: 32813751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China.
    Zong Y; Chen Z; Innes JB; Chen C; Wang Z; Wang H
    Nature; 2007 Sep; 449(7161):459-62. PubMed ID: 17898767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil charcoal to assess the impacts of past human disturbances on tropical forests.
    Vleminckx J; Morin-Rivat J; Biwolé AB; Daïnou K; Gillet JF; Doucet JL; Drouet T; Hardy OJ
    PLoS One; 2014; 9(11):e108121. PubMed ID: 25391134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late Neolithic phytolith and charcoal records of human activities and vegetation change in Shijiahe culture, Tanjialing site, China.
    Zhu XH; Li B; Ma CM; Zhu C; Wu L; Liu H
    PLoS One; 2017; 12(5):e0177287. PubMed ID: 28542219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrogenic organic matter from palaeo-fires during the Holocene: A case study in a sequence of buried soils at the Central Ebro Basin (NE Spain).
    Armas-Herrera CM; Pérez-Lambán F; Badía-Villas D; Peña-Monné JL; González-Pérez JA; Picazo Millán JV; Jiménez-Morillo NT; Sampietro-Vattuone MM; Gracia MA
    J Environ Manage; 2019 Jul; 241():558-566. PubMed ID: 30318158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macro-charcoal accumulation in floodplain wetlands: Problems and prospects for reconstruction of fire regimes and environmental conditions.
    Graves BP; Ralph TJ; Hesse PP; Westaway KE; Kobayashi T; Gadd PS; Mazumder D
    PLoS One; 2019; 14(10):e0224011. PubMed ID: 31647825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charcoal-inferred Holocene fire and vegetation history linked to drought periods in the Democratic Republic of Congo.
    Hubau W; Van den Bulcke J; Van Acker J; Beeckman H
    Glob Chang Biol; 2015 Jun; 21(6):2296-308. PubMed ID: 25594742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.
    Belcher CM; Punyasena SW; Sivaguru M
    PLoS One; 2013; 8(8):e72265. PubMed ID: 23977267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest.
    Carcaillet C; Bergman I; Delorme S; Hornberg G; Zackrisson O
    Ecology; 2007 Feb; 88(2):465-77. PubMed ID: 17479764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long fallows allow soil regeneration in slash-and-burn agriculture.
    Lintemani MG; Loss A; Mendes CS; Fantini AC
    J Sci Food Agric; 2020 Feb; 100(3):1142-1154. PubMed ID: 31680261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing Holocene fire history in a southern Appalachian forest using soil charcoal.
    Fesenmyer KA; Christensen NL
    Ecology; 2010 Mar; 91(3):662-70. PubMed ID: 20426326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand.
    Argiriadis E; Battistel D; McWethy DB; Vecchiato M; Kirchgeorg T; Kehrwald NM; Whitlock C; Wilmshurst JM; Barbante C
    Sci Rep; 2018 Aug; 8(1):12113. PubMed ID: 30108240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periglacial fires and trees in a continental setting of Central Canada, Upper Pleistocene.
    Bélanger N; Carcaillet C; Padbury GA; Harvey-Schafer AN; Van Rees KJ
    Geobiology; 2014 Mar; 12(2):109-18. PubMed ID: 24405713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests.
    Brubaker LB; Higuera PE; Rupp TS; Olson MA; Anderson PM; Hu FS
    Ecology; 2009 Jul; 90(7):1788-801. PubMed ID: 19694128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macro-particle charcoal C content following prescribed burning in a mixed-conifer forest, Sierra Nevada, California.
    Wiechmann ML; Hurteau MD; Kaye JP; Miesel JR
    PLoS One; 2015; 10(8):e0135014. PubMed ID: 26258533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape.
    Leys BA; Commerford JL; McLauchlan KK
    PLoS One; 2017; 12(4):e0176445. PubMed ID: 28448597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of aridity and fire on holocene prairie communities in the eastern Prairie Peninsula.
    Nelson DM; Hu FS; Grimm EC; Curry BB; Slate JE
    Ecology; 2006 Oct; 87(10):2523-36. PubMed ID: 17089661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak climatic control of stand-scale fire history during the late holocene.
    Gavin DG; Hu FS; Lertzman K; Corbett P
    Ecology; 2006 Jul; 87(7):1722-32. PubMed ID: 16922322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes.
    Barrett CM; Kelly R; Higuera PE; Hu FS
    Ecology; 2013 Feb; 94(2):389-402. PubMed ID: 23691658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Holocene landscape dynamic multiproxy reconstruction: How do interactions between fire and insect outbreaks shape an ecosystem over long time scales?
    Navarro L; Harvey AÉ; Ali A; Bergeron Y; Morin H
    PLoS One; 2018; 13(10):e0204316. PubMed ID: 30278052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.