These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 32813892)
1. Indirect visual guided fracture reduction robot based on external markers. Fu Z; Sun H; Dong X; Chen J; Rong H; Guo Y; Lin S Int J Med Robot; 2020 Aug; ():e2153. PubMed ID: 32813892 [TBL] [Abstract][Full Text] [Related]
2. Indirect visual guided fracture reduction robot based on external markers. Fu Z; Sun H; Dong X; Chen J; Rong H; Guo Y; Lin S Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 32881221 [TBL] [Abstract][Full Text] [Related]
3. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction. Li C; Wang T; Hu L; Zhang L; Du H; Zhao L; Wang L; Tang P Proc Inst Mech Eng H; 2015 Sep; 229(9):629-37. PubMed ID: 26199026 [TBL] [Abstract][Full Text] [Related]
4. Long bone fracture reduction and deformity correction using the hexapod external fixator with a new method: a feasible study and preliminary results. Liu Y; Li H; Liu J; Zhang X; Yushan M; Liu Z; Ma C; Yusufu A BMC Musculoskelet Disord; 2021 Feb; 22(1):221. PubMed ID: 33627096 [TBL] [Abstract][Full Text] [Related]
5. Navigation system for robot-assisted intra-articular lower-limb fracture surgery. Dagnino G; Georgilas I; Köhler P; Morad S; Atkins R; Dogramadzi S Int J Comput Assist Radiol Surg; 2016 Oct; 11(10):1831-43. PubMed ID: 27236651 [TBL] [Abstract][Full Text] [Related]
6. Minimally invasive treatment of displaced femoral shaft fractures with a teleoperated robot-assisted surgical system. Zhu Q; Liang B; Wang X; Sun X; Wang L Injury; 2017 Oct; 48(10):2253-2259. PubMed ID: 28736125 [TBL] [Abstract][Full Text] [Related]
7. Hill-based musculoskeletal model for a fracture reduction robot. Tan Y; Fu Z; Duan L; Cui R; Wu M; Chen J; Guo Y; Li J; Guo X; Sun H Int J Med Robot; 2021 Jun; 17(3):e2252. PubMed ID: 33689227 [TBL] [Abstract][Full Text] [Related]
8. Constraint of musculoskeletal tissue and path planning of robot-assisted fracture reduction with collision avoidance. Xu H; Lei J; Hu L; Zhang L Int J Med Robot; 2022 Apr; 18(2):e2361. PubMed ID: 34969160 [TBL] [Abstract][Full Text] [Related]
9. Robot-patient registration for optical tracker-free robotic fracture reduction surgery. Ha HG; Han G; Lee S; Nam K; Joung S; Park I; Hong J Comput Methods Programs Biomed; 2023 Jan; 228():107239. PubMed ID: 36410266 [TBL] [Abstract][Full Text] [Related]
10. Study on the Modeling and Compensation Method of Pose Error Analysis for the Fracture Reduction Robot. Liu M; Li J; Sun H; Guo X; Xuan B; Ma L; Xu Y; Ma T; Ding Q; An B Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014108 [TBL] [Abstract][Full Text] [Related]
11. Application of 3D printed customized external fixator in fracture reduction. Qiao F; Li D; Jin Z; Gao Y; Zhou T; He J; Cheng L Injury; 2015; 46(6):1150-5. PubMed ID: 25702252 [TBL] [Abstract][Full Text] [Related]
12. Experimental research based on robot-assisted surgery: Lower limb fracture reduction surgery planning navigation system. Du H; Wu G; Hu Y; He Y; Zhang P Health Sci Rep; 2024 Apr; 7(4):e2033. PubMed ID: 38655421 [TBL] [Abstract][Full Text] [Related]
13. A removable hybrid robot system for long bone fracture reduction. Wang T; Li C; Hu L; Tang P; Zhang L; Du H; Luan S; Wang L; Tan Y; Peng C Biomed Mater Eng; 2014; 24(1):501-9. PubMed ID: 24211933 [TBL] [Abstract][Full Text] [Related]
14. Staged correction trajectory with hexapod external fixator for the satisfactory reduction of long bone shaft fracture. Liu Y; Wang F; Liu K; Cai F; Zhang X; Li H; Zhang T; Yusufu A BMC Musculoskelet Disord; 2022 Mar; 23(1):224. PubMed ID: 35260138 [TBL] [Abstract][Full Text] [Related]
15. Bone collision detection method for robot assisted fracture reduction based on force curve slope. Cai C; Sun C; Song Y; Lv Q; Bi J; Zhang Q Comput Methods Programs Biomed; 2021 Sep; 209():106315. PubMed ID: 34352651 [TBL] [Abstract][Full Text] [Related]
16. Hands-on robot-assisted fracture reduction system guided by a linear guidance constraints controller using a pre-operatively planned goal pose. Kim WY; Ko SY Int J Med Robot; 2019 Apr; 15(2):e1967. PubMed ID: 30346113 [TBL] [Abstract][Full Text] [Related]
17. A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Zeng C; Xing W; Wu Z; Huang H; Huang W Injury; 2016 Oct; 47(10):2223-2227. PubMed ID: 27372187 [TBL] [Abstract][Full Text] [Related]
18. Technologies evolution in robot-assisted fracture reduction systems: a comprehensive review. Kou W; Zhou P; Lin J; Kuang S; Sun L Front Robot AI; 2023; 10():1315250. PubMed ID: 38077454 [No Abstract] [Full Text] [Related]
19. [Accurate traction of long bone fracture with full-length planning module of orthopedic robot system: experiments in vitro and in vivo]. Zhao CP; Wang JQ; Liu WY; Su YG; Zhang LJ; Wang Y; Hu L; Wang MY; Wang TM Zhonghua Yi Xue Za Zhi; 2007 Nov; 87(43):3038-42. PubMed ID: 18261346 [TBL] [Abstract][Full Text] [Related]
20. Long bone fracture reduction using a fluoroscopy-based navigation system: a feasibility and accuracy study. Weil YA; Liebergall M; Mosheiff R; Helfet DL; Pearle AD Comput Aided Surg; 2007 Sep; 12(5):295-302. PubMed ID: 17957537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]