BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32813972)

  • 1. Quantifying the Relationship between Conformational Dynamics and Enzymatic Activity in Ribonuclease HI Homologues.
    Martin JA; Robustelli P; Palmer AG
    Biochemistry; 2020 Sep; 59(35):3201-3205. PubMed ID: 32813972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons of Ribonuclease HI Homologs and Mutants Uncover a Multistate Model for Substrate Recognition.
    Martin JA; Palmer AG
    J Am Chem Soc; 2022 Mar; 144(12):5342-5349. PubMed ID: 35312304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational preferences underlying reduced activity of a thermophilic ribonuclease H.
    Stafford KA; Trbovic N; Butterwick JA; Abel R; Friesner RA; Palmer AG
    J Mol Biol; 2015 Feb; 427(4):853-866. PubMed ID: 25550198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes.
    Butterwick JA; Loria JP; Astrof NS; Kroenke CD; Cole R; Rance M; Palmer AG
    J Mol Biol; 2004 Jun; 339(4):855-71. PubMed ID: 15165855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression, purification, and characterization of a recombinant ribonuclease H from Thermus thermophilus HB8.
    Kanaya S; Itaya M
    J Biol Chem; 1992 May; 267(14):10184-92. PubMed ID: 1315754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of the enzymatic activity of ribonuclease HI from Thermus thermophilus HB8 with a suppressor mutation method.
    Hirano N; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2000 Oct; 39(43):13285-94. PubMed ID: 11052682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme.
    Mandel AM; Akke M; Palmer AG
    J Mol Biol; 1995 Feb; 246(1):144-63. PubMed ID: 7531772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inserted Gly residue fine tunes dynamics between mesophilic and thermophilic ribonucleases H.
    Butterwick JA; Palmer AG
    Protein Sci; 2006 Dec; 15(12):2697-707. PubMed ID: 17088323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Native-state energetics of a thermostabilized variant of ribonuclease HI.
    Goedken ER; Marqusee S
    J Mol Biol; 2001 Dec; 314(4):863-71. PubMed ID: 11734003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of Escherichia coli ribonuclease HI by strategic replacement of amino acid residues with those from the thermophilic counterpart.
    Kimura S; Nakamura H; Hashimoto T; Oobatake M; Kanaya S
    J Biol Chem; 1992 Oct; 267(30):21535-42. PubMed ID: 1328237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal adaptation of conformational dynamics in ribonuclease H.
    Stafford KA; Robustelli P; Palmer AG
    PLoS Comput Biol; 2013; 9(10):e1003218. PubMed ID: 24098095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of E. coli Ribonuclease HI by the 'stability profile of mutant protein' (SPMP)-inspired random and non-random mutagenesis.
    Haruki M; Saito Y; Ota M; Nishikawa K; Kanaya S
    J Biotechnol; 2006 Jul; 124(3):512-22. PubMed ID: 16545882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H.
    Hollien J; Marqusee S
    J Mol Biol; 2002 Feb; 316(2):327-40. PubMed ID: 11851342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the dynamic information content of a protein NMR structure: comparison of a molecular dynamics simulation with the NMR and X-ray structures of Escherichia coli ribonuclease HI.
    Philippopoulos M; Lim C
    Proteins; 1999 Jul; 36(1):87-110. PubMed ID: 10373009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostability of Enzymes from Molecular Dynamics Simulations.
    Zeiske T; Stafford KA; Palmer AG
    J Chem Theory Comput; 2016 Jun; 12(6):2489-92. PubMed ID: 27123810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of ribonuclease HI from Thermus thermophilus HB8 by the spontaneous formation of an intramolecular disulfide bond.
    Hirano N; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 1998 Sep; 37(36):12640-8. PubMed ID: 9730837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 A resolution.
    Ishikawa K; Okumura M; Katayanagi K; Kimura S; Kanaya S; Nakamura H; Morikawa K
    J Mol Biol; 1993 Mar; 230(2):529-42. PubMed ID: 8385228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the internal motions of Escherichia coli ribonuclease HI by a combination of 15N-NMR relaxation analysis and molecular dynamics simulation: examination of dynamic models.
    Yamasaki K; Saito M; Oobatake M; Kanaya S
    Biochemistry; 1995 May; 34(20):6587-601. PubMed ID: 7756290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex.
    Ohtani N; Tomita M; Itaya M
    Biochem J; 2008 Jun; 412(3):517-26. PubMed ID: 18318663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.