BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32814056)

  • 1. Mono- and Poly-unsaturated Phosphatidic Acid Regulate Distinct Steps of Regulated Exocytosis in Neuroendocrine Cells.
    Tanguy E; Costé de Bagneaux P; Kassas N; Ammar MR; Wang Q; Haeberlé AM; Raherindratsara J; Fouillen L; Renard PY; Montero-Hadjadje M; Chasserot-Golaz S; Ory S; Gasman S; Bader MF; Vitale N
    Cell Rep; 2020 Aug; 32(7):108026. PubMed ID: 32814056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidic acid: Mono- and poly-unsaturated forms regulate distinct stages of neuroendocrine exocytosis.
    Tanguy E; Wolf A; Montero-Hadjadje M; Gasman S; Bader MF; Vitale N
    Adv Biol Regul; 2021 Jan; 79():100772. PubMed ID: 33288473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells.
    Tanguy E; Wolf A; Wang Q; Chasserot-Golaz S; Ory S; Gasman S; Vitale N
    Adv Biol Regul; 2022 Jan; 83():100844. PubMed ID: 34876384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage.
    Zeniou-Meyer M; Zabari N; Ashery U; Chasserot-Golaz S; Haeberlé AM; Demais V; Bailly Y; Gottfried I; Nakanishi H; Neiman AM; Du G; Frohman MA; Bader MF; Vitale N
    J Biol Chem; 2007 Jul; 282(30):21746-57. PubMed ID: 17540765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipase D1 produces phosphatidic acid at sites of secretory vesicle docking and fusion.
    Bills BL; Hulser ML; Knowles MK
    Mol Biol Cell; 2024 Mar; 35(3):ar39. PubMed ID: 38117597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidic acid metabolism regulates neuroendocrine secretion but is not under the direct control of lipins.
    Baneux C; Tanguy E; Thahouly T; Vitale A; Chasserot-Golaz S; Bader MF; Gasman S; Vitale N
    IUBMB Life; 2020 Apr; 72(4):533-543. PubMed ID: 31967386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells.
    Vitale N
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):167-71. PubMed ID: 20074053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. betaPIX-activated Rac1 stimulates the activation of phospholipase D, which is associated with exocytosis in neuroendocrine cells.
    Momboisse F; Lonchamp E; Calco V; Ceridono M; Vitale N; Bader MF; Gasman S
    J Cell Sci; 2009 Mar; 122(Pt 6):798-806. PubMed ID: 19261846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARF6 regulates the synthesis of fusogenic lipids for calcium-regulated exocytosis in neuroendocrine cells.
    Béglé A; Tryoen-Tóth P; de Barry J; Bader MF; Vitale N
    J Biol Chem; 2009 Feb; 284(8):4836-45. PubMed ID: 19124467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipase D in calcium-regulated exocytosis: lessons from chromaffin cells.
    Bader MF; Vitale N
    Biochim Biophys Acta; 2009 Sep; 1791(9):936-41. PubMed ID: 19289180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective recapture of secretory granule components after full collapse exocytosis in neuroendocrine chromaffin cells.
    Ceridono M; Ory S; Momboisse F; Chasserot-Golaz S; Houy S; Calco V; Haeberlé AM; Demais V; Bailly Y; Bader MF; Gasman S
    Traffic; 2011 Jan; 12(1):72-88. PubMed ID: 20880191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Coffin-Lowry syndrome-associated protein RSK2 controls neuroendocrine secretion through the regulation of phospholipase D1 at the exocytotic sites.
    Zeniou-Meyer M; Béglé A; Bader MF; Vitale N
    Ann N Y Acad Sci; 2009 Jan; 1152():201-8. PubMed ID: 19161391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Coffin-Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1.
    Zeniou-Meyer M; Liu Y; Béglé A; Olanich ME; Hanauer A; Becherer U; Rettig J; Bader MF; Vitale N
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8434-9. PubMed ID: 18550821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. V-ATPase modulates exocytosis in neuroendocrine cells through the activation of the ARNO-Arf6-PLD pathway and the synthesis of phosphatidic acid.
    Wang Q; Wolf A; Ozkan S; Richert L; Mely Y; Chasserot-Golaz S; Ory S; Gasman S; Vitale N
    Front Mol Biosci; 2023; 10():1163545. PubMed ID: 37091866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melittin promotes exocytosis in neuroendocrine cells through the activation of phospholipase A₂.
    Vitale N; Thiersé D; Bader MF
    Regul Pept; 2010 Nov; 165(1):111-6. PubMed ID: 19800928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Phospholipase D in Regulated Exocytosis.
    Rogasevskaia TP; Coorssen JR
    J Biol Chem; 2015 Nov; 290(48):28683-96. PubMed ID: 26433011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease.
    Tanguy E; Wang Q; Vitale N
    Handb Exp Pharmacol; 2020; 259():115-130. PubMed ID: 30570690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa.
    Bullen HE; Soldati-Favre D
    FEBS Lett; 2016 Aug; 590(15):2469-81. PubMed ID: 27403735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated secretion in chromaffin cells: an essential role for ARF6-regulated phospholipase D in the late stages of exocytosis.
    Vitale N; Chasserot-Golaz S; Bader MF
    Ann N Y Acad Sci; 2002 Oct; 971():193-200. PubMed ID: 12438119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Small GTPase RalA controls exocytosis of large dense core secretory granules by interacting with ARF6-dependent phospholipase D1.
    Vitale N; Mawet J; Camonis J; Regazzi R; Bader MF; Chasserot-Golaz S
    J Biol Chem; 2005 Aug; 280(33):29921-8. PubMed ID: 15980073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.