These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32814105)

  • 1. An operational robotic pollen monitoring network based on automatic image recognition.
    Oteros J; Weber A; Kutzora S; Rojo J; Heinze S; Herr C; Gebauer R; Schmidt-Weber CB; Buters JTM
    Environ Res; 2020 Dec; 191():110031. PubMed ID: 32814105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic and Online Pollen Monitoring.
    Oteros J; Pusch G; Weichenmeier I; Heimann U; Möller R; Röseler S; Traidl-Hoffmann C; Schmidt-Weber C; Buters JT
    Int Arch Allergy Immunol; 2015; 167(3):158-66. PubMed ID: 26302820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations.
    Oteros J; Sofiev M; Smith M; Clot B; Damialis A; Prank M; Werchan M; Wachter R; Weber A; Kutzora S; Heinze S; Herr CEW; Menzel A; Bergmann KC; Traidl-Hoffmann C; Schmidt-Weber CB; Buters JTM
    Sci Total Environ; 2019 Oct; 688():1263-1274. PubMed ID: 31726556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Airborne Pollen Using an Automatic, Real-Time Monitoring System: Evidence from Two Sites.
    Plaza MP; Kolek F; Leier-Wirtz V; Brunner JO; Traidl-Hoffmann C; Damialis A
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternaria spore exposure in Bavaria, Germany, measured using artificial intelligence algorithms in a network of BAA500 automatic pollen monitors.
    González-Alonso M; Boldeanu M; Koritnik T; Gonçalves J; Belzner L; Stemmler T; Gebauer R; Grewling Ł; Tummon F; Maya-Manzano JM; Ariño AH; Schmidt-Weber C; Buters J
    Sci Total Environ; 2023 Feb; 861():160180. PubMed ID: 36403848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards European automatic bioaerosol monitoring: Comparison of 9 automatic pollen observational instruments with classic Hirst-type traps.
    Maya-Manzano JM; Tummon F; Abt R; Allan N; Bunderson L; Clot B; Crouzy B; Daunys G; Erb S; Gonzalez-Alonso M; Graf E; Grewling Ł; Haus J; Kadantsev E; Kawashima S; Martinez-Bracero M; Matavulj P; Mills S; Niederberger E; Lieberherr G; Lucas RW; O'Connor DJ; Oteros J; Palamarchuk J; Pope FD; Rojo J; Šaulienė I; Schäfer S; Schmidt-Weber CB; Schnitzler M; Šikoparija B; Skjøth CA; Sofiev M; Stemmler T; Triviño M; Zeder Y; Buters J
    Sci Total Environ; 2023 Mar; 866():161220. PubMed ID: 36584954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards automatic airborne pollen monitoring: From commercial devices to operational by mitigating class-imbalance in a deep learning approach.
    Schaefer J; Milling M; Schuller BW; Bauer B; Brunner JO; Traidl-Hoffmann C; Damialis A
    Sci Total Environ; 2021 Nov; 796():148932. PubMed ID: 34273827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Classification of Airborne Pollen using Neural Networks.
    Schiele J; Damialis A; Rabe F; Schmitt M; Glaser M; Haring F; Brunner JO; Bauer B; Schuller B; Traidl-Hoffmann C
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4474-4478. PubMed ID: 31946859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medium- and long-range transport events of Alnus pollen in western Mediterranean.
    Picornell A; Recio M; Ruiz-Mata R; García-Sánchez J; Cabezudo B; Trigo MDM
    Int J Biometeorol; 2020 Oct; 64(10):1637-1647. PubMed ID: 32507988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne pollen calendar of Portugal: a 15-year survey (2002-2017).
    Camacho I; Caeiro E; Nunes C; Morais-Almeida M
    Allergol Immunopathol (Madr); 2020; 48(2):194-201. PubMed ID: 31601498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of airborne pollen concentrations in Zagreb, Croatia, 2002.
    Peternel R; Culig J; Mitić B; Vukusić I; Sostar Z
    Ann Agric Environ Med; 2003; 10(1):107-12. PubMed ID: 12852741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human exposure to airborne pollen and relationships with symptoms and immune responses: Indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments.
    Damialis A; Häring F; Gökkaya M; Rauer D; Reiger M; Bezold S; Bounas-Pyrros N; Eyerich K; Todorova A; Hammel G; Gilles S; Traidl-Hoffmann C
    Sci Total Environ; 2019 Feb; 653():190-199. PubMed ID: 30408667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Methods of studying airborne pollen and pollen calendars].
    Thibaudon M; Caillaud D; Besancenot JP
    Rev Mal Respir; 2013 Jun; 30(6):463-79. PubMed ID: 23835319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of reference data from different Rapid-E devices supports automatic pollen detection in more locations.
    Matavulj P; Cristofori A; Cristofolini F; Gottardini E; Brdar S; Sikoparija B
    Sci Total Environ; 2022 Dec; 851(Pt 2):158234. PubMed ID: 36007635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the Hirst-Type Spore Trap for Simultaneous Monitoring of Prokaryotic and Eukaryotic Biodiversities in Urban Air Samples by Next-Generation Sequencing.
    Núñez A; Amo de Paz G; Ferencova Z; Rastrojo A; Guantes R; García AM; Alcamí A; Gutiérrez-Bustillo AM; Moreno DA
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics.
    Maya-Manzano JM; Sadyś M; Tormo-Molina R; Fernández-Rodríguez S; Oteros J; Silva-Palacios I; Gonzalo-Garijo A
    Sci Total Environ; 2017 Apr; 584-585():603-613. PubMed ID: 28132776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-ground effect of height on pollen exposure.
    Rojo J; Oteros J; Pérez-Badia R; Cervigón P; Ferencova Z; Gutiérrez-Bustillo AM; Bergmann KC; Oliver G; Thibaudon M; Albertini R; Rodríguez-De la Cruz D; Sánchez-Reyes E; Sánchez-Sánchez J; Pessi AM; Reiniharju J; Saarto A; Calderón MC; Guerrero C; Berra D; Bonini M; Chiodini E; Fernández-González D; García J; Trigo MM; Myszkowska D; Fernández-Rodríguez S; Tormo-Molina R; Damialis A; Kolek F; Traidl-Hoffmann C; Severova E; Caeiro E; Ribeiro H; Magyar D; Makra L; Udvardy O; Alcázar P; Galán C; Borycka K; Kasprzyk I; Newbigin E; Adams-Groom B; Apangu GP; Frisk CA; Skjøth CA; Radišić P; Šikoparija B; Celenk S; Schmidt-Weber CB; Buters J
    Environ Res; 2019 Jul; 174():160-169. PubMed ID: 31077991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne pollen calendar of Lublin, Poland.
    Weryszko-Chmielewska E; Piotrowska K
    Ann Agric Environ Med; 2004; 11(1):91-7. PubMed ID: 15236504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constructing a pollen proxy from low-cost Optical Particle Counter (OPC) data processed with Neural Networks and Random Forests.
    Mills SA; Bousiotis D; Maya-Manzano JM; Tummon F; MacKenzie AR; Pope FD
    Sci Total Environ; 2023 May; 871():161969. PubMed ID: 36754323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First allergenic pollen monitoring in Bucharest and results of three years collaboration with European aerobiology specialists.
    Leru PM; Eftimie AM; Thibaudon M
    Rom J Intern Med; 2018 Mar; 56(1):27-33. PubMed ID: 28865233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.