These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32814126)

  • 1. A predictive model for creep deformation following vertebral compression fractures.
    Luo J; Dolan P; Adams MA; Annesley-Williams DJ; Wang Y
    Bone; 2020 Dec; 141():115595. PubMed ID: 32814126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphometric measurements can improve prediction of progressive vertebral deformity following vertebral damage.
    Luo J; Dolan P; Adams MA; Annesley-Williams DJ
    Eur Spine J; 2022 Jan; 31(1):70-78. PubMed ID: 34613493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of bone damage on creep behaviours of human vertebral trabeculae.
    O'Callaghan P; Szarko M; Wang Y; Luo J
    Bone; 2018 Jan; 106():204-210. PubMed ID: 29081379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of compression fracture on trabecular bone score at lumbar spine.
    Hsu Y; Hsieh TJ; Ho CH; Lin CH; Chen CK
    Osteoporos Int; 2021 May; 32(5):961-970. PubMed ID: 33104822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenesis of Vertebral Anterior Wedge Deformity: A 2-Stage Process?
    Landham PR; Gilbert SJ; Baker-Rand HL; Pollintine P; Robson Brown KA; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2015 Jun; 40(12):902-8. PubMed ID: 25822544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cranio-caudal asymmetries in trabecular architecture reflect vertebral fracture patterns.
    Yang G; Battié MC; Boyd SK; Videman T; Wang Y
    Bone; 2017 Feb; 95():102-107. PubMed ID: 27876503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of vertebral compression fractures and clinical application.
    Adams MA; Dolan P
    Arch Orthop Trauma Surg; 2011 Dec; 131(12):1703-10. PubMed ID: 21805360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of vertebroplasty on endplate subsidence in elderly female spines.
    Nagaraja S; Awada HK; Dreher ML; Bouck JT; Gupta S
    J Neurosurg Spine; 2015 Mar; 22(3):273-82. PubMed ID: 25525963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone creep can cause progressive vertebral deformity.
    Pollintine P; Luo J; Offa-Jones B; Dolan P; Adams MA
    Bone; 2009 Sep; 45(3):466-72. PubMed ID: 19465166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative computed tomography discriminates between postmenopausal women with low spine bone mineral density with vertebral fractures and those with low spine bone mineral density only: the SHATTER study.
    Paggiosi MA; Debono M; Walsh JS; Peel NFA; Eastell R
    Osteoporos Int; 2020 Apr; 31(4):667-675. PubMed ID: 31993717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.
    Kim DG; Shertok D; Ching Tee B; Yeni YN
    J Biomech; 2011 Jun; 44(9):1660-5. PubMed ID: 21481880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship of whole human vertebral body creep to bone density and texture via clinically available imaging modalities.
    Oravec D; Kim W; Flynn MJ; Yeni YN
    J Biomech; 2022 Apr; 135():111021. PubMed ID: 35245836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative, 3D Visualization of the Initiation and Progression of Vertebral Fractures Under Compression and Anterior Flexion.
    Jackman TM; Hussein AI; Curtiss C; Fein PM; Camp A; De Barros L; Morgan EF
    J Bone Miner Res; 2016 Apr; 31(4):777-88. PubMed ID: 26590372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression.
    Robinson DL; Tse KM; Franklyn M; Zhang J; Fernandez JW; Ackland DC; Lee PVS
    J Mech Behav Biomed Mater; 2021 Jun; 118():104457. PubMed ID: 33780859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements: a retrospective case-control study.
    López Picazo M; Humbert L; Di Gregorio S; González Ballester MA; Del Río Barquero LM
    Osteoporos Int; 2019 May; 30(5):1099-1110. PubMed ID: 30770938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Bone Marrow Edema and Fracture Age in Vertebral Fragility Fractures Using MDCT.
    Chang MY; Lee SH; Ha JW; Park Y; Zhang HY; Lee SH
    AJR Am J Roentgenol; 2020 Oct; 215(4):970-977. PubMed ID: 32809864
    [No Abstract]   [Full Text] [Related]  

  • 19. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body.
    Kim DG; Navalgund AR; Tee BC; Noble GJ; Hart RT; Lee HR
    Bone; 2012 Nov; 51(5):868-75. PubMed ID: 22944606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical comparison of kyphoplasty versus a titanium mesh implant with cement for stabilization of vertebral compression fractures.
    Upasani VV; Robertson C; Lee D; Tomlinson T; Mahar AT
    Spine (Phila Pa 1976); 2010 Sep; 35(19):1783-8. PubMed ID: 20098352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.