BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32814241)

  • 1. Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil.
    Wang Q; Shaheen SM; Jiang Y; Li R; Slaný M; Abdelrahman H; Kwon E; Bolan N; Rinklebe J; Zhang Z
    J Hazard Mater; 2021 Feb; 403():123628. PubMed ID: 32814241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil.
    Shaheen SM; Shams MS; Khalifa MR; El-Dali MA; Rinklebe J
    Ecotoxicol Environ Saf; 2017 Aug; 142():375-387. PubMed ID: 28441624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ stabilization of arsenic and lead in contaminated soil using iron-rich water treatment residuals.
    Rathnayake S; Schwab AP
    J Environ Qual; 2022 May; 51(3):425-438. PubMed ID: 35412665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper(II) and lead(II) removal from aqueous solution by water treatment residues.
    Castaldi P; Silvetti M; Garau G; Demurtas D; Deiana S
    J Hazard Mater; 2015; 283():140-7. PubMed ID: 25262486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoavailability of potentially toxic elements from industrially contaminated soils to wild grass.
    Yotova G; Zlateva B; Ganeva S; Simeonov V; Kudłak B; Namieśnik J; Tsakovski S
    Ecotoxicol Environ Saf; 2018 Nov; 164():317-324. PubMed ID: 30125778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.
    Zhao Y; Wendling LA; Wang C; Pei Y
    J Environ Sci (China); 2015 Aug; 34():133-42. PubMed ID: 26257356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined chemical and phytoremediation method for reclamation of acid mine drainage-impacted soils.
    RoyChowdhury A; Sarkar D; Datta R
    Environ Sci Pollut Res Int; 2019 May; 26(14):14414-14425. PubMed ID: 30868460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer.
    Sarkar D; Quazi S; Makris KC; Datta R; Khairom A
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):329-36. PubMed ID: 17657461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trialling Water-Treatment Residuals in the Remediation of Former Mine Site Soils: Investigating Improvements Achieved for Plants, Earthworms, and Soil Solution.
    Arab KAH; Thompson DF; Oliver IW
    Environ Toxicol Chem; 2020 May; 39(6):1277-1291. PubMed ID: 32135571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water treatment residuals as soil amendments: Examining element extractability, soil porewater concentrations and effects on earthworm behaviour and survival.
    Howells AP; Lewis SJ; Beard DB; Oliver IW
    Ecotoxicol Environ Saf; 2018 Oct; 162():334-340. PubMed ID: 30005406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic immobilization in soils amended with drinking-water treatment residuals.
    Sarkar D; Makris KC; Vandanapu V; Datta R
    Environ Pollut; 2007 Mar; 146(2):414-9. PubMed ID: 16939697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content.
    Salam A; Shaheen SM; Bashir S; Khan I; Wang J; Rinklebe J; Rehman FU; Hu H
    J Environ Manage; 2019 May; 237():5-14. PubMed ID: 30776771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term effects of drinking-water treatment residuals on dissolved phosphorus export from vegetated buffer strips.
    Habibiandehkordi R; Quinton JN; Surridge BW
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6068-76. PubMed ID: 25388559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the coal mining-contaminated soil on the food safety in Shaanxi, China.
    Hussain R; Luo K; Liang H; Hong X
    Environ Geochem Health; 2019 Jun; 41(3):1521-1544. PubMed ID: 30600450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An anaerobic incubation study of metal lability in drinking water treatment residue with implications for practical reuse.
    Wang C; Yuan N; Pei Y
    J Hazard Mater; 2014 Jun; 274():342-8. PubMed ID: 24813662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging effects on reactivity of an aluminum-based drinking-water treatment residual as a soil amendment.
    Agyin-Birikorang S; O'Connor GA
    Sci Total Environ; 2009 Jan; 407(2):826-34. PubMed ID: 18976798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of water treatment residuals on phosphorus solubility and leaching.
    Elliott HA; O'Connor GA; Lu P; Brinton S
    J Environ Qual; 2002; 31(4):1362-9. PubMed ID: 12175057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of copper in contaminated sandy soils using calcium water treatment residue.
    Fan J; He Z; Ma LQ; Yang Y; Yang X; Stoffella PJ
    J Hazard Mater; 2011 May; 189(3):710-8. PubMed ID: 21454013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drinking water treatment residuals: a review of recent uses.
    Ippolito JA; Barbarick KA; Elliott HA
    J Environ Qual; 2011; 40(1):1-12. PubMed ID: 21488487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.